Welcome to IJSDR UGC CARE norms ugc approved journal norms IJRTI Research Journal | ISSN : 2455-2631
International Peer Reviewed & Refereed Journals, Open Access Journal
ISSN Approved Journal No: 2455-2631 | Impact factor: 8.15 | ESTD Year: 2016
Scholarly open access journals, Peer-reviewed, and Refereed Journals, Impact factor 8.15 (Calculate by google scholar and Semantic Scholar | AI-Powered Research Tool) , Multidisciplinary, Monthly, Indexing in all major database & Metadata, Citation Generator, Digital Object Identifier(DOI)

Issue: March 2023

Volume 8 | Issue 3

Impact factor: 8.15

Click Here For more Info

Imp Links for Author
Imp Links for Reviewer
Research Area
Subscribe IJSDR
Visitor Counter

Copyright Infringement Claims
Indexing Partner
Published Paper Details
Paper Title: A Review of Recent Approaches in Floating Systems for Drug Delivery Using Microballoons
Authors Name: Sachin Namdeo Kothawade , Vishal Vijay Pande , Sandesh Sachhidanand Bole , Kalyani Appasaheb Autade , Rajashri Balasaheb Sumbe
Unique Id: IJSDR2212095
Published In: Volume 7 Issue 12, December-2022
Abstract: Gastro-retentive floating microspheres were developed as a result of the recent advancements in floating delivery systems for drugs (FDDS), which included the uniform dispersion of multiparticulate dosage forms along the GIT. This could lead to more consistent drug absorption and a lower risk of local irritation. Microballoons (MB), a multi-unit extended release with a sphere-shaped cavity encased in a tough polymer shell, have been developed as a dosage form with exceptional buoyancy in the stomach. This preparation for constrained intestinal absorption is made to float on top of gastric acid, that has a relative density lower than 1.By using enteric acrylic polymers and the emulsion solvent diffusion method, microballoons are prepared and filled to drug in one‘s outer polymer casings. Enteric acrylic plastics are used to generate microballoons that are drug-loaded in one‘s external polymer casings and dissipate in a solution of dichloromethane and ethanol. Cavity development in microparticles seems to be particularly correlated with dichloromethane evaporation. Microballoons with a drug distributed or dispersed all through the particle-matrix have the potential for a controlled drug release and float continuously for more than 12 hours in vitro out over the surface of an acidified dissolution medium with surfactant. The drug is released slowly and at the desired rate as the microballoons glide over the components of the stomach, increasing gastro-retention time and lowering fluctuations in plasma concentration.
Keywords: Gastro retentive drug delivery systems, non-effervescent systems, floating drug delivery systems, microballoons, CRDDS
Cite Article: "A Review of Recent Approaches in Floating Systems for Drug Delivery Using Microballoons", International Journal of Science & Engineering Development Research (www.ijsdr.org), ISSN:2455-2631, Vol.7, Issue 12, page no.626 - 633, December-2022, Available :http://www.ijsdr.org/papers/IJSDR2212095.pdf
Downloads: 000201537
Publication Details: Published Paper ID: IJSDR2212095
Registration ID:203070
Published In: Volume 7 Issue 12, December-2022
DOI (Digital Object Identifier): http://doi.one/10.1729/Journal.32342
Page No: 626 - 633
Publisher: IJSDR | www.ijsdr.org
ISSN Number: 2455-2631

Click Here to Download This Article

Article Preview

Click here for Article Preview

Major Indexing from www.ijsdr.org
Google Scholar ResearcherID Thomson Reuters Mendeley : reference manager Academia.edu
arXiv.org : cornell university library Research Gate CiteSeerX DOAJ : Directory of Open Access Journals
DRJI Index Copernicus International Scribd DocStoc

Track Paper
Important Links
Conference Proposal
DOI (A digital object identifier)

Providing A digital object identifier by DOI
How to GET DOI and Hard Copy Related
Open Access License Policy
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Creative Commons License
This material is Open Knowledge
This material is Open Data
This material is Open Content
Social Media

Indexing Partner