DEVELOPMENT AND VALIDATION OF A HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC) METHOD FOR THE DETERMINATION OF RELATED SUBSTANCES IN A NOVEL ANTICANCER DRUG

Vaishnavi Pawar

Principal name - Swati Deshmukh
Guide name- Vanita chature

Abstract:

Azacitidine is a chemotherapeutic agent. Also referred to as Vidaza. It addresses individuals who are ineligible for high-dose stem cell or bone marrow transplants. A novel HPLC methodology for identifying potential active medicinal constituents has been developed and validated. The technique utilizes gradient elution and an ACE C18 column (150 x 4.6 mm, 15 μL). The mobile phases A and B consisted of methanol R and a phosphate buffer solution containing triethanolamine, adjusted to a pH of 7.0. At a flow rate of 1 ml/min, the mobile phase ratio varied gradually during the study. A 240 nm DAD detection was used. The technique was verified according to ICH and Ukrainian State Pharmacopoeia standards. The drug's stability was evaluated at elevated temperatures, strong acids and bases, and oxidizing agents. The solutions were analysed using HPLC. Azacitidine was vulnerable to breakdown by peroxide, alkali, and acid, resulting in the emergence of inexplicable pollutants.

Keywords: Development, Validation, High-Performance Liquid Chromatography and Anticancer Drug.

1 INTRODUCTION

HPLC analysis yielded the most precise results. If the concept is endorsed by regulatory authorities, they are more likely to grant permission. HPLC is frequently employed in the production of generic pharmaceuticals as a result of its ability to identify chemical contaminants and impurities. The chemical constituents under analysis determine the HPLC detector, which is available in a variety of configurations. In order to assess the assay and impurities, a diverse array of detectors is employed in both normal and stressful stability testing. RI, Fluorescence, UV-Visible, ELSD, and Photo Diode Array detectors are among the most common types. In India, there is potential for growth in the commercialization of combination dosage forms and academic research. India enjoys great privileges. According to Sonawane et al. (2010), the majority of methodologies for evaluating combination dosage forms evaluate each constituent individually. This is pertinent to the majority of methodologies (1-3).

Pharmaceutical corporations in every industrialized nation are working assiduously to create a generic prescription that is as effective as the original but more cost-effective. During standard stability

assessments, a variety of degradation products were produced in accordance with ICH standards. It is logical to employ the quality equation technique to address these issues, as it has been proposed as a solution. The proposed method for assessing the quality attributes of the formulation at each time interval necessitates a greater amount of time than a conventional stability study. Numerous medicinal components are being investigated during the current phase of technique development. Stress testing, which is frequently referred to as forced degradation, is employed to accomplish robust process design and specificity demonstration. This functions as a test, in the event that no additional information is provided. This is accurate when there is limited product information available. Additionally, the research concentrates on the consequences of storage-related degradation (4, 5).

Pharmaceutical formulation, production, and packaging may be improved by an understanding of chemical behaviour, thereby enhancing the quality of the ultimate product. The conclusions of the investigation are contingent upon the pharmaceutical supplies and apparatus that were employed. Evaluation of degradation products may not be necessary for the development and assessment of analytical methodologies. This is accurate provided that degradation products are not intentionally produced. The method has the potential to improve the efficacy of time and the capacity to identify the most significant degradation products by expediting the decomposition of each formulation component. The reliability and precision of these methods were demonstrated through the development and evaluation of post-degradation materials. They may be implemented in any API evaluation. This eliminates the necessity for modifications to accommodate new contaminants, thereby saving both time and resources (6, 7).

2 MATERIAL AND METHOD

2.1 Instrumentation and Chromatographic conditions:

Instruments used were mentioned in table 1.

Table 1 Instrumentation

Instruments	Model No.	Manufacturer	
HPLC	1260 Infinity II	Agilent	
HPLC Column	Eclipse Plus C18	Agilent	
	(150mm x 4.6mm, 5µm)	right	
Detector	Photo Diode Array	-	
UV-Visible Spectrophotometer	UV- 1900	Shimadzu	
PH meter	EQ-610	Lab Line	
Ultra Sonicator	LMUC 6	-	
Water purification system	-	Mili- Q	
Analytical Weighing Balance	ME204/A04	Shimadzu	

2.2 RP-HPLC RS method development for the estimation of Azacitidine in bulk drug.

2.2.1 Trial 1

In the stability study of the DMF approach, it was noted that the tailing factor for the principal peak is unsatisfactory, as shown by the observed bulge and the theoretical plate counts. (8)

2.2.1.1 Chromatographic conditions:

Instrument : HPLC

Column : Phenomenax LUNA SCX 4.6 X 50 mm, 5 μm

Injection Volume : 20 μL

Flow rate : 2.0 mL/min

Wavelength : UV 230 nm

Column : 30° C

Sample Temperature : 25°C

Retention Time : About 3.0 minute for Azacitidine

Run Time : 20 minutes Standard and SST

: 40 minutes for Blank, Placebo and sample

Needle wash : Mixture of Acetonitrile and Water in the ratio of 90:10.

Seal wash : Mixture of Acetonitrile and Water in the ratio of 10:90

2.2.2 Trial 2

Buffer, gradient protocol, column, and column oven temperature Research to establish a novel approach for the RS test of Azacitidine (9).

2.2.2.1 Chromatographic conditions:

Instrument : HPLC

Column : ACE EXCEL 250X 4.6 mm, 3 µm

Injection Volume : 20 μL

Flow rate : 1.0 mL/min
Wavelength : UV 230 nm

Column Temperature : 40° C Sample Temperature : 25° C

2.2.2.2 Preparation of solutions:

Buffer solution pH-2.5:

After accurately weighing 2.0 g of Tetrabutyl ammonium hydrogen sulfate, incorporate it into two litters of distilled water and stir vigorously until dissolved (pH 2.547 was recorded). Employ a PVDF membrane filter with a pore diameter of 0.45 µm to purify the mixture.

Mobile phase:

Prepare a 95:05 mixture of acetonitrile and buffer solution. Sonicate the solution for fifteen minutes to degas it.

2.2.3 Trial 3

The trial involves the buffer temperature, gradient program, column, and column oven. Investigate the development of a novel Azacitidine RS testing methodology (10).

2.2.3.1 Chromatographic conditions:

Instrument : HPLC

Column : ACE EXCEL 250X 4.6 mm, 3 µm

Injection Volume : 5 μL

Flow rate : 0.6 mL/min

Wavelength : UV 230 nm

Column Temperature : 25°C

Sample Temperature : 25°C

2.2.3.2 Preparation of solutions:

Buffer solution pH-2.5:

8.0 g of Tetrabutyl ammonium hydrogen sulfate should be accurately weighed and thereafter placed into two litters of filtered water, together with 2.0 mL of triethylamine, and thoroughly agitated to achieve dissolution (observed pH 2.532). Employ a PVDF membrane filter with a pore diameter of 0.45 μm to purify the mixture.

Mobile phase A:

Used Buffer pH 2.532

Mobile phase B:

Used 100% Acetonitrile.

2.2.4 Trial 4

Buffer, gradient protocol, column, and column oven temperature Research to establish a novel approach for the RS test of Azacitidine (11).

2.2.4.1 Chromatographic conditions:

Instrument : HPLC

Column : ACE EXCEL 250X 4.6 mm, 3 µm

Injection Volume : 5 μL

Flow rate : 0.8 mL/min

Wavelength : UV 230 nm

Column Temperature : 50°C

Sample Temperature : 25°C

2.2.4.2 Preparation of solutions:

Dilute Orthophosphoric acid for buffer pH adjustment preparation:

Introduce 10.0 mL of orthophosphoric acid into a 100 mL volumetric flask holding about 200 mL of water and stir well. Cool and dilute with water to the desired volume, then combine well.

Buffer solution pH-2.5: Accurately weigh about 5.0 g of 1-Heptane sulfonic acid salt and put it into 2 litters of filtered water, then adjust the pH to 2.472 using diluted orthophosphoric acid. Pass the solution over a 0.45 μm PVDF membrane filter.

Mobile phase A:

Used Buffer pH 2.472

Mobile phase B:

Used 100% Acetonitrile.

2.2.5 Trial 5

2.2.5.1 Chromatographic conditions:

Mode : HPLC

Column : 150 X 4.6 mm, 3.0 µm (Inertsil ODS-HL is suitable)

Injection Volume : $15 \mu L$

Wavelength UV 260 nm for any unspecified impurities

(dual wave length) UV 274 nm for Azacitidine Related Compound A and B

Column Temperature : 35°C Sample Temperature : 25°C

Flow rate : 1.0 mL/minute

Retention Time : About 28.0 minute for Azacitidine

Run Time : 80 minute

Seal wash : Mixture of acetonitrile and water in the ratio of 10:90

2.2.5.2 Preparation of solutions: (12, 13)

Dilute Acetic acid solution for needle wash:

Prepare a diluted acetic acid solution for needle washing by combining 5 mL of glacial acetic acid with 1000 mL of water and ensuring thorough mixing.

Mobile phase A:

Dissolve 4.33 g of sodium octane sulfonate in 1000 mL of water and stir well using a magnetic stirrer. Introduce 5 mL of glacial acetic acid while stirring, and continue stirring for about 15 minutes. Pass the solution through a 0.2 µm nylon membrane filter and sonicate for about 10 minutes to degas.

Mobile phase B:

Prepare a 50:50 mixture of acetonitrile and methanol, stirring for about 10 minutes on a magnetic stirrer. Sonicate for about 10 minutes to degas.

Mobile phase C:

Acetonitrile.

System suitability solution:

Introduce 6.0 mg of the working or reference standard of Azacitidine into a 50 mL volumetric flask. Bake the sample at 120°C for 10 minutes. The flask must be let to reach room temperature. Introduce 3.0 mL

of 0.1N hydrochloric acid. The solution should be heated in water for 10 minutes. Allow the flask to equilibrate to room temperature, then include 50 mg of the reference or working standard of Azacitidine. To prepare the working standard or reference standard, include 25 mL of diluent and sonicate for 5 minutes. Dilute to achieve homogeneity and increase volume.

2.3 Validation of the RP-HPLC RS Method for the Quantification of Azacitidine in Bulk Drug and Formulations with Forced Degradation Studies.

2.3.1 Specificity:

Specificity refers to the ability to accurately assess the analyse amongst constituents that are expected to be present in the sample matrix. Typically, they may include matrices, degradants, pollutants, etc. (14).

2.3.2 Forced degradation study:

A forced degradation research will be performed on 300 mg tablets, placebo, and Azacitidine active pharmaceutical ingredient (API). The samples will undergo acid, base, oxidation, hydrolysis, photolysis, humidity, and heat degradation. Each degradation study should provide a designated blank space. (15)

2.3.3 Limit of detection (LOD) and limit of quantification (LOQ) precision: (16)

2.3.3.1 Limit of detection (LOD):

The concentration of an analyse at which detection becomes possible but quantification becomes inconsistent is known as the LOD.

2.3.3.2 Limit of quantitation (LOQ):

The LOQ is the lowest concentration of an analyse that can be identified quantitatively with a satisfactory level of precision and accuracy.

2.3.4 Linearity:

Analytical procedures are considered linear if the test results are proportionate to the concentration of the sample analyte. Six levels, from LOQ to 200%, will be used for the linearity investigation of designated known contaminants at the specification limit and Azacitidine at standard concentration. Quantitatively diluted Consolidate solutions of contaminants. 1. To get concentrations ranging from the Limit of Quantification (LOQ) to 200% of specified known contaminants and Azacitidine at a standard concentration, combine the impurity solution. Azacitidine Standard stock solution and Azacitidine Standard solution. Each linearity standard solution must be injected three times. (17)

2.3.5 Accuracy:

The accuracy of an analytical procedure is defined as the degree to which its test results match the real value. One common metric for accuracy is the percentage recovery of the known analyte that is added. A complete accuracy metric is used to assess the analytical process. Obtain accuracy at the prescribed limits for the known pollutants, including the Limit of Quantification (LOQ), 50%, 100%, and 200%. We will add the detected pollutants to the sample solution at each stage to measure the recovery rates. Using the given technique to create three control sample solutions, determine the impurity percentage. Take the accuracy levels and remove the detected contaminants to get the recovery. Gather three samples for the accuracy study at each level and combine them into one. (18)

2.3.6 Precision:

The accuracy of an analytical procedure is defined as the degree to which many measurements taken from multiple samples of the same homogenous material under prescribed conditions agree with one another. (19)

2.3.6.1 System precision:

To assess the system's accuracy, add six aliquots of the standard solution to one HPLC vial as per the testing protocol.

2.3.6.2 Method precision (Repeatability):

Accuracy throughout a short period of time under constant operating conditions is measured by reproducibility. For accurate dosing, 300 mg tablets of Azacitidine will be used. Get three 300 mg homogeneous Azacitidine tablet sample solutions and six 300 mg spiked tablet sample solutions ready. For calculations involving related compounds, three solutions will be used as control samples. (20)

2.3.6.3 Intermediate precision:

Intermediate Laboratory intermediate accuracy varies with day, analyst, HPLC system, column manufacturer, and sample batch, as explained in the section on repeatability. With 300 mg of Azacitidine in each tablet, significant precision is required. Create three control sample solutions and six spiked sample solutions on a separate day by a different analyst using unique HPLC equipment, a column of the same brand, and consistent samples of 300 mg Azacitidine Tablets per process. For calculations involving related compounds, three solutions will be used as control samples.

2.3.7 Range:

The range of an analytical methodology is the interval between the maximal and minimum analyte concentrations in a sample, where the method exhibits enough accuracy, precision, and linearity. It is common practice to indicate the range in the same units as the test findings that are derived analytically.

2.3.8 Filter study:

Combine 300 mg of Azacitidine tablets into one sample solution and add a spike to the other.

2.3.9 Solution stability:

One 300 mg Azacitidine tablet sample solution should be prepared according to the specificity of the method, and another 300 mg Azacitidine tablet sample solution should be prepared using the spiked method. All solutions should be kept at room temperature. Find out what happens when you check the answer at different times. Compare the percentage impurity values obtained at various time periods for the sample solution and calculate the overall % relative standard deviation (RSD) of the Azacitidine peak for the standard solution (21).

2.3.10 Robustness:

Wilfully alter all of the chromatographic parameters listed below, and then observe how these changes affect the system's applicability and the percentage values of impurities. Apply the chromatographic conditions specified in the testing process to three solutions of 300 mg Azacitidine Tablets (one each for the control and spiking samples), and use the method variables listed to find the technique's robustness. Evaluate the system's appropriateness and the impurity percentage in each variable circumstance (21, 22).

2.3.11 System suitability:

The suitability of the system must be verified prior to the use of each validation parameter. Assess the system's suitability using the method.

3 RESULT AND DISCUSSION

3.1 Development of an RP-HPLC RS technique for the quantification of Azacitidine in bulk medication and formulations, including forced degradation investigations.

3.1.1 Trial 1

3.1.1.1 Observations-

- 1. A hump was noticed at the tailing of the main peak.
- 2. The theoretical plate count and the tailing factor for the principal peak are suboptimal.

3.1.1.2 Conclusion-

A study on buffer, gradient, column, and column oven temperature is necessary.

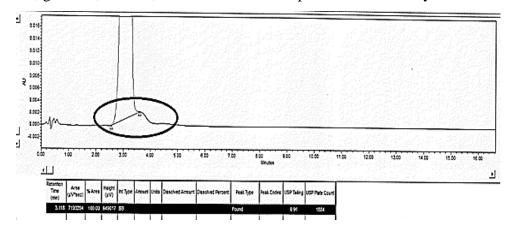


Figure 1 Chromatogram for Trial 1

3.1.2 Trial 2

3.1.2.1 Observations

1. At tailing of main peak baseline pattern not good

3.1.2.2 Conclusion

Buffer, gradient, column and column oven temperature Study needs to be performed.

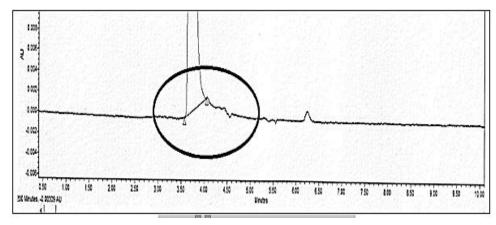


Figure 2 Chromatogram for Trial 2

From observation this methodology can be finalized and Prevalidation study needs to be performed.

3.1.3 Trial 3

3.1.3.1 Observations-

At tailing of main peak baseline pattern not good

3.1.3.2 Conclusion-

Buffer, gradient, column and column oven temperature Study needs to be performed.

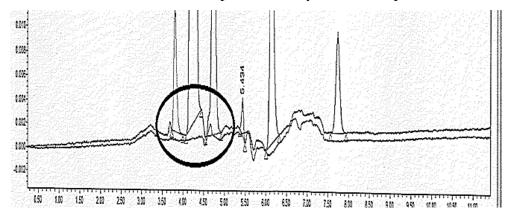


Figure 3 Chromatogram for Trial 3

3.1.4 Trial 4

3.1.4.1 Observations-

- 1. The major tailing noticed is around 1.64, which is somewhat elevated.
- 2. All impurity peaks are distinctly separated from the primary peak.

3.1.4.2 Conclusion-

To enhance the tailing gradient, an investigation into column oven temperature and injection volume is necessary.

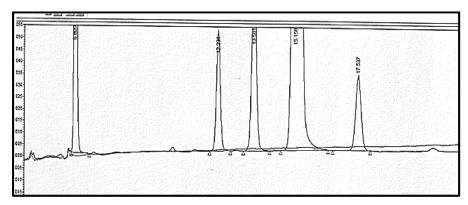


Figure 4 Chromatogram for Trial 4

3.1.5 Trial 5

3.1.5.1 Observation:

- 1. Absence of interference Blank peak seen during the retention time of the primary peak impurity.
- 2. All impurity peaks are distinctly separated from one another.
- 3. The tailing factor for the primary peak is around 5, representing an improvement over the prior experiment result.

3.1.5.2 Conclusion

This approach may be finished based on observation, and a validation study must be conducted.

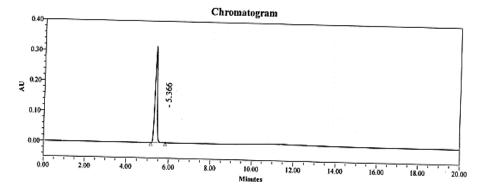


Figure 5 Chromatogram for Trial 5

3.2 RP-HPLC RS method Validation for the estimation of Azacitidine in bulk drug and formulations with forced degradation studies.

Table 2 Validation Summary

Sr.	Validation	Results	Acceptance Criteria				
No.	Parameter	Results	Acceptance Criteria				
1	Specificity						
1.1	Check for blank, placebo and impurities interference						
			There should not be any				
		There is no any interference due to blank and	interference due to blank and				
	Interference	placebo at the retention time of Azacitidine	placebo at the retention time				
		peak and known impurities peaks.	of Azacitidine peak and				
			known impurities peaks.				
-			Peak purity criteria (Peak				
			purity = purity angle < purity				
		Peak purity criteria (Peak purity = purity	threshold) should pass for				
		angle < purity threshold) passes for	Azacitidine and known				
		Azacitidine and known impurities peaks in	impurities peaks in the mix				
	Peak purity	the mix standard solution, sample solution,	standard solution, sample				
		placebo spiked solution with known	solution, placebo spiked				
		impurities and Azacitidine and sample spiked	solution with known				
		solution with known impurities.	impurities and Azacitidine				
			and sample spiked solution				
			with known impurities.				
1.2		Forced degradation study					
	Interference	There is no any interference observed due to	There should not be any				
	interretence	blank, placebo and degradation products with	interference due to blank,				

155N:2	ISSN:2455-2631 August 2025 IJSDR Volume 10 Issue					
		the Azacitidine	and known impuri	placebo and degradation		
				products with the Azacitidine		
				and known impurities.		
	Peak purity			Peak purity criteria (Peak		
		Peak purity crite	ria (Peak purity =)	Purity	purity = Purity angle < Purity	
		angle < Purity threshold) passes for			threshold) should pass for	
		Azacitidine and known impurities peak in all			Azacitidine and known	
		the degraded samples.			impurities peak in all the	
				degraded samples.		
		Limit of o	letection (LOD):			
		Peak due to Azaciti	dine and known in	npurities		
		are detect	ted at LOD level.			
		Name	LOD values	S	Limit of detection (LOD):	
		Azacitidine	0.038%		Peak due to Azacitidine and	
		Azacitidine			known impurities should be	
		Related	0.08%		detected at LOD level.	
		compound A				
		Azacitidine				
		Related	0.07%			
	LOD and compound B					
	LOD and					
2	LOQ	-	antitation (LOQ)) :		
2		Limit of qu		%	Limit of quantitation	
2	LOQ	-	LOQ		Limit of quantitation (LOQ):	
2	LOQ	Limit of qu		%	_	
2	LOQ	Limit of que	LOQ	% RSD	(LOQ):	
2	LOQ	Name Azacitidine	LOQ	% RSD	(LOQ): RSD of peak area response	
2	LOQ	Name Azacitidine Azacitidine	LOQ 0.05%	% RSD 4.7	(LOQ): RSD of peak area response due to Azacitidine and known	
2	LOQ	Name Azacitidine Azacitidine Related	LOQ 0.05%	% RSD 4.7	(LOQ): RSD of peak area response due to Azacitidine and known impurities should not be more	
2	LOQ	Name Azacitidine Azacitidine Related compound A	LOQ 0.05%	% RSD 4.7	(LOQ): RSD of peak area response due to Azacitidine and known impurities should not be more than 10.0%.	
2	LOQ	Name Azacitidine Azacitidine Related compound A Azacitidine	LOQ 0.05% 0.15%	% RSD 4.7 6.8	(LOQ): RSD of peak area response due to Azacitidine and known impurities should not be more than 10.0%. Signal to noise ratio for	
2	LOQ	Name Azacitidine Azacitidine Related compound A Azacitidine Related compound B	LOQ 0.05% 0.15%	% RSD 4.7 6.8	(LOQ): RSD of peak area response due to Azacitidine and known impurities should not be more than 10.0%. Signal to noise ratio for Azacitidine and known	
2	LOQ	Name Azacitidine Azacitidine Related compound A Azacitidine Related compound B Signal to noise related	LOQ 0.05% 0.15%	% RSD 4.7 6.8 4.3	(LOQ): RSD of peak area response due to Azacitidine and known impurities should not be more than 10.0%. Signal to noise ratio for Azacitidine and known impurities should not be less	
2	LOQ	Name Azacitidine Azacitidine Related compound A Azacitidine Related compound B Signal to noise r known impuriti	LOQ 0.05% 0.15% 0.14% ratio for Azacitidin	% RSD 4.7 6.8 4.3 4.3	(LOQ): RSD of peak area response due to Azacitidine and known impurities should not be more than 10.0%. Signal to noise ratio for Azacitidine and known impurities should not be less than 10.	
2	LOQ	Name Azacitidine Azacitidine Related compound A Azacitidine Related compound B Signal to noise related	LOQ 0.05% 0.15% 0.14% ratio for Azacitidin les are found above	% RSD 4.7 6.8 4.3 ee and ee 10.	(LOQ): RSD of peak area response due to Azacitidine and known impurities should not be more than 10.0%. Signal to noise ratio for Azacitidine and known impurities should not be less than 10. The correlation coefficient	
3	LOQ	Name Azacitidine Azacitidine Related compound A Azacitidine Related compound B Signal to noise r known impuriti	LOQ 0.05% 0.15% 0.14% eatio for Azacitiding tes are found above Correlation	% RSD 4.7 6.8 4.3 4.3 ee and ee 10. on (R)	(LOQ): RSD of peak area response due to Azacitidine and known impurities should not be more than 10.0%. Signal to noise ratio for Azacitidine and known impurities should not be less than 10. The correlation coefficient ('R') value should not be less	
	LOQ precision	Name Azacitidine Azacitidine Related compound A Azacitidine Related compound B Signal to noise r known impuriti	LOQ 0.05% 0.15% 0.14% catio for Azacitidinates are found above coefficient 0.99998	% RSD 4.7 6.8 4.3 4.3 ee and ee 10. on (R)	(LOQ): RSD of peak area response due to Azacitidine and known impurities should not be more than 10.0%. Signal to noise ratio for Azacitidine and known impurities should not be less than 10. The correlation coefficient ('R') value should not be less than 0.99 over the working	
	LOQ precision	Name Azacitidine Azacitidine Related compound A Azacitidine Related compound B Signal to noise r known impuriti	LOQ 0.05% 0.15% 0.14% catio for Azacitidinates are found above coefficient 0.99998	% RSD 4.7 6.8 4.3 4.3 ee and ee 10. on (R)	(LOQ): RSD of peak area response due to Azacitidine and known impurities should not be more than 10.0%. Signal to noise ratio for Azacitidine and known impurities should not be less than 10. The correlation coefficient ('R') value should not be less	

ISSN:2	2455-2631		Augu	ıst 2025 IJSDR Volume 10 Issue 8
		Azacitidine		
		Related	0.99994	
		compound B		
		Mean % Recove	ery of Azacitidine Related	
		Co	ompound A:	
		% Level	Mean % Recovery	-
		LOQ	109.2	-
		50	102.5	-
		100	100.4	-
		200	102.2	
		Overall Mean		Recovery of known impurities
		(except LOQ	101.7	at LOQ Level should be
		Level)		between 70.0% and 130.0%.
		Overall %		
		RSD	2.6	Recovery and Overall mean
		(except LOQ		recovery of known impurities
		Level)		at each level (except LOQ
4	Accuracy	Mean % Recove	ery of Azacitidine Related	Level) should be between
		Co	ompound B:	80.0% and 120.0%.
		% Level	Mean % Recovery	Overall % RSD for recovery
		LOQ	114.5	of known impurities (Except
		50	100.0	LOQ Level) should be not
		100	103.1	more than 5.0
		200	103.0	_
		Overall Mean		
		(except LOQ	102.0	
		Level)		
		Overall %		
		RSD	2.7	
		(except LOQ		
		Level)		
5			Precision	•
	System	Taili	ing factor = 1.0	Tailing factor: Tailing factor
F 4	precision			of Azacitidine peak obtained
5.1		Theoretical plates = 120263		from 1 st injection of mix
				standard solution at UV 260

ISSN:2	ISSN:2455-2631		% RSD	st 2025 IJSDR Volume 10 Issue 8 nm should not be more than
			Azacitidine = 0.7%	2.0
				Theoretical Plates:
		Azacitio	dine Related compound A = 1.3%	Theoretical plates of
			_	Azacitidine peak obtained
		Azacitio	dine Related compound B = 0.8%	from 1st injection of mix
				standard solution at UV 260
				nm should not be less than
				2000
				% RSD: Relative standard
				deviation of Azacitidine peak
				area obtained from six
				replicate injections of mix
				standard solution at UV 260
				nm should not be more than
				5.0%.
		RSD of	known impurities in six spiked	RSD for % w/w of known
	Method	solution:		impurities in six spiked
5.2	precision	For Azacitidine Tablets 300 mg:		sample solutions should not
	precision	Azacitio	dine Related Compound A = 1.6%	be more than 10.0%.
		Azacitio	dine Related Compound B = 1.1%	
			For Azacitidine Tablets 300 mg:	
			RSD of known impurities in six	
			spiked sample solution:	RSD for % w/w of known
	Intermediate precision		Azacitidine Related Compound A	impurities in six spiked
			= 2.8%	sample solutions should not
			Azacitidine Related Compound B	be more than 10.0%.
			= 2.4%	
5.			Overall RSD for % w/w of	Overall RSD for % w/w of
			known impurities in twelve	known impurities in twelve
			spiked sample solutions from	spiked sample solutions from
			method precision and	method precision and
			intermediate precision:	intermediate precision should
			Azacitidine Related Compound A	not be more than 15.0%.
			= 4.2%	
			Azacitidine Related Compound B = 4.2%	
6	Dana	0	= 4.2% Range was established based on	Range should be established
U	Range		Kange was established based off	Kange should be established

ISSN:2	2455-2631			Augus	st 2025 IJSDR Volume 10 Issue 8
			the validation da	ta from linearity,	based on the validation data
			accuracy and precision.		from linearity, accuracy and
			Impurities	Established	precision.
			Name	Range	
			A === =i4i di ===	0.15% to 200%	
			Azacitidine	w.r.t. Impurity	
			Related Compound A	specification	
				limit	
			A :4: :1:	0.14% to 200%	
			Azacitidine	w.r.t. Impurity	
			Related	specification	
			Compound B	limit	
			Absolute diff	Gerence in the	
			impuritie	es results:	
			For Azacitidine	Tablets 300 mg	
		Controlled sample:			
			0.45 μm RC syringe filter:		Results obtained with
			Azacitidine Related compound A =		centrifuged sample and
			NA		filtered sample are;
			Azacitidine Relat	ed compound B =	Between LOQ to 0.5%,
			N	ÍΑ	Absolute difference should not
7	Ellara des des		Any individu	al unspecified	be more than 0.05,
'	Filter study		Impurity = 0.002		Between 0.5% to 1.0%,
		Total impurities $= 0.02$		rities $= 0.02$	Absolute difference should not
			0.45 μm Nylon syringe filter:		be more than 0.1 and
			Azacitidine Related compound A =		More than 1.0%, Absolute
			NA		difference should not be more
			Azacitidine Related compound B =		than 0.2.
			NA		
			Any individual unspecified		
			Impurity $= 0.001$		
			Total impurities = 0.001		
		I	For Azacitidine Tablets 300 mg		Results obtained with
			Controlled sample:		centrifuged sample and filtered
		0.4	.45 µm pre-filter + PVDF syringe		sample are;
			filter	:	Between LOQ to 0.5%,
		Aza	zacitidine Related compound A = NA		Absolute difference should not
		Aza	acitidine Related co	ompound $B = NA$	be more than 0.05,
	<u> </u>				

ISSN:	2455-2631			ıst 2025 IJSDR Volume 10 Issue 8	
		Any individual unspecified Impurity = Between 0.5% to 1.0%,			
		0.007	Absolute difference should not		
		Total impuritie	be more than 0.1 and		
		0.45 6.14	DEEE	More than 1.0%, Absolute	
		0.45 μm pre-filter +	• 0	difference should not be more	
		filter:		than 0.2.	
		Azacitidine Related co	•		
		Azacitidine Related co	-		
		Any individual unspec			
		0.005			
		Total impuritie			
		Sample spiked			
		0.45 μm RC syr	O		
		Azacitidine Related co	-		
		Azacitidine Related co	_		
		0.45 μm Nylon sy			
		Azacitidine Related co	_		
	Azacitidine Related compound B = 0.02				
8	Solution Stability				
	Standard solution: Overall RSD of Azacitidine peak area up to 94 hours at room temperature = 1.6% Overall RSD of Azacitidine related Compound A peak at up to 94 hours at room temperature = 2.1% Overall RSD of Azacitidine related Compound B peak ar up to 94 hours at room temperature = 1.2%		overall RS related Com Compound solution ob shoule	SD of Azacitidine, Azacitidine pound A and Azacitidine related I B peak areas in mix standard tained at different time interval I d not be more than 5.0%.	
	Fo	r Azacitidine Tablets	Results obtain	ned from sample solution and	
		300 mg	sample spiked so	olution at different time interval,	
	1				

Sample solution:	Between LOQ to 0.5% Absolute difference		
Absolute difference in the	should not be more than 0.05,		
impurities results obtained	at initial and at 75 hours at	room temperature:	More than 1.0% Absolute difference should not

Azacitidine Related

compound A = NA

Azacitidine Related

compound B = NA

Any individual unspecified

Impurity = 0.001

Total impurities = 0.001

Sample spiked solution: Absolute difference in the

impurities results obtained

at initial and at 75 hours at

room temperature: Azacitidine Related

compound A = 0.02

Azacitidine Related

compound B = 0.01

High Column Oven
Temperature (HT):

40°C

Tailing factor = 1.0

Tailing obtained

U
Theoreti

Change in column oven temperature (± 5°C) of 35°C

116386

% RSD

Azacitidine = 0.8%

Azacitidine Related compound A = 1.9%

Azacitidine Related compound B = 1.0%

RSD of three spiked

Theoretical plates =

Tailing factor: Tailing factor of Azacitidine peak obtained from 1st injection of mix standard solution at UV 260 nm should not be more than 2.0

Theoretical Plates: Theoretical plates of Azacitidine peak obtained from 1st injection of mix standard solution at UV 260 nm should not be less than 2000.

**RSD: Relative standard deviation of Azacitidine peak area obtained from six replicate injections of mix standard solution at UV 260 nm should not be more than 5.0%.

be more than 0.2.

% RSD: Relative standard deviation of Azacitidine related Compound A and Azacitidine related Compound B area obtained from six replicate injections of mix standard solution at UV 274 nm should not be more than 5.0%.

RSD for % w/w of known impurities in three spiked

9

Robustness

ISSN:24	55-2631		August 2025 IJSDR Volume 10 Issue 8
	sa	mple solution:	sample solution of each variable condition should not
	Aza	acitidine Related	be more than 10.0%.
	com	spound $A = 0.7\%$	Overall RSD for % w/w known impurities in six
	Aza	acitidine Related	spiked sample solutions from method precision and
	com	apound $B = 2.0\%$	three sample spiked solutions of each variable
			condition should not be more than 15.0%.
		Overall RSD:	
		acitidine Related	
		pound $A = 4.6\%$	
	Aza	citidine Related	
	com	pound B = 2.3%	
	Lov	v Column Oven	
	Ten	perature (LT):	Tailing Contain Tailing Contain C. Americi ding and
		30°C	Tailing factor: Tailing factor of Azacitidine peak
	Tai	ling factor $= 1.0$	obtained from 1 st injection of mix standard solution at
			UV 260 nm should not be more than 2.0
	The	oretical plates =	Theoretical Plates: Theoretical plates of Azacitidine
		80920	peak obtained from 1 st injection of mix standard
		% RSD	solution at UV 260 nm should not be less than 2000.
	Δ72	citidine = 0.2%	% RSD: Relative standard deviation of Azacitidine
		citidine Related	peak area obtained from six replicate injections of mix
		pound $A = 0.7\%$	standard solution at UV 260 nm should not be more
		citidine Related	than 5.0%.
			% RSD: Relative standard deviation of Azacitidine
	Colli	pound $B = 0.8\%$	related Compound A and Azacitidine related
	DGD		Compound B area obtained from six replicate
		of three spiked	injections of mix standard solution at UV 274 nm
		mple solution:	should not be more than 5.0%.
		acitidine Related	RSD for % w/w of known impurities in three spiked
		spound $A = 2.3\%$	sample solution of each variable condition should not
		acitidine Related	be more than 10.0%.
	com	apound $B = 1.2\%$	Overall RSD for % w/w known impurities in six
		Overall RSD:	spiked sample solutions from method precision and
	Aza	acitidine Related	three sample spiked solutions of each variable
	com	spound $A = 1.8\%$	condition should not be more than 15.0%.
	Aza	acitidine Related	
	com	apound B = 2.0%	

4 SUMMARY AND CONCLUSION

This work sought to provide an analytical approach for identifying degradation impurities arising from forced degradation tests and process impurities produced during the synthesis of Azacitidine. A novel RP-HPLC-UV method was developed for the quantitative analysis of Azacitidine and its impurities based on these properties. The process included assessing elements vital to separation efficiency, such as chromatographic columns, elution techniques, mobile phase composition, solvents, and detection wavelength. The methodology fulfilled the criteria for method validation by adhering to ICH recommendations and demonstrating adequate sensitivity, specificity, accuracy, linearity, repeatability, and robustness. This investigation provides significant new insights for the quality control of Azacitidine (23).

5 REFERENCES

- 1. Vossler, D. G., Weingarten, M., Gidal, B. E. American epilepsy society treatments committee. Summary of antiepileptic drugs available in the United States of America: working toward a world without epilepsy. Epilepsy Currents. 2018; 18.4_suppl: 1-26.
- 2. Vogt, V.L., Äikiä, M., Del Barrio, A., Boon, P., Borbély, C., Bran, E., Braun, K., Carette, E., Clark, M., Cross, J.H., Dimova, P., Fabo, D., Foroglou, N., Francione, S., Gersamia, A., Gil-Nagel, A., Guekht, A. Current standards of neuropsychological assessment in epilepsy surgery centers across Europe. Epilepsia. 2017; 58(3): 343-355.
- 3. Janmohamed, M., Brodie, M.J., Kwan, P. Pharmacoresistance Epidemiology, mechanisms, and impact on epilepsy treatment. Neuropharmacology. 2020; 168: 107790
- 4. Severina, A. I., Georgiyants, V. A., Shtrygol, S. Yu., Kavraiskyi, D. P. Synthesis of N-substituted derivatives of 1-(4-methoxyphenyl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one as potential anticonvulsants. Scripta scientifica pharmaceutica. 2016; 3(2): 36-40.
- 5. Severina H. I., Kavraiskyi D. P., Shtrygol S. Yu., Georgiyants V. A. National University of Pharmacy. Declared 06.07.2015 № a 2015 06662. Published 26.02.2018. Bulletin 4.
- 6. Jain, D., Basniwal, P. K. Forced degradation and impurity profiling: recent trends in analytical perspectives. Journal of Pharmaceutical and Biomedical Analysis. 2013; 86: 11-35.
- 7. ICH Harmonised Tripartite Guideline. Impurities in new drug substances Q3A (R2). In: Proceedings of the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, Geneva, Switzerland. 2006.
- 8. Roy, J. Pharmaceutical impurities—a mini-review. AAPs Pharm SciTech, 2002; 3.2: 1-8.
- 9. Venkannaa, G., Madhusudhan, G., Mukkanti, K., Sampath Kumar, Y. Identification synthesis of process-related impurities (substances) ethyl-4-(1-hydroxy-1-methylethyl)-2-propyl-imidazole-5-carboxylate [key intermediate of Olmesartan medoxomil (Antihypertensive drug)]. Asian Journal of Research in Chemistry. 2015; 8(5): 307-317.
- 10. Yamgar, R., Sawant, S. Synthesis and characterization of novel impurities in Paroxetine Hydrochloride hemihydrate and adopting QbD principles to build in quality in process of final drug substance. Asian Journal of Research in Chemistry. 2012; 5(3): 329-335.
- 11. Li, Y., Liu, D. Q., Yang, S., Sudini, R., McGuire, M. A., Bhanushali, D. S., Kord, A. S. Analytical control of process impurities in Pazopanib hydrochloride by impurity fate mapping. Journal of Pharmaceutical and Biomedical Analysis. 2010; 52(4): 493-507.
- 12. Pirrone, G. F., Mathew, R. M., Makarov, A. A., Bernardoni, F., Klapars, A., Hartman, R., Limanto J., Regalado, E. L. Supercritical fluid chromatography-photodiode array detection-electrospray ionization mass spectrometry as a framework for impurity fate mapping in the development and manufacture of drug substances. Journal of Chromatography B. 2018; 1080: 42-49.

- 13. Kjell, D. P., Hallberg, D. W., Kalbfleisch, J. M., McCurry, C. K., Semo, M. J., Sheldon, E. M., Spitler T. J., Wang, M. Determination of the source of the N-methyl impurity in the synthesis of pemetrexed disodium heptahydrate. Organic Process Research & Development. 2005; 9(6): 738-742.
- 14. Hongliu Wu. Pemetrexed intermediate and preparation method thereof. China Unexamined APPLIC, open to Public inspection CN20071024889. 06 Jul 2007.
- 15. Liu, D. Q., Chen, T. K., McGuire, M. A., Kord, A. S. Analytical control of genotoxic impurities in the pazopanib hydrochloride manufacturing process. Journal of Pharmaceutical and Biomedical Analysis. 2009; 50(2): 144-150.
- 16. Vadgaonkar, A. R., Kasture, V. S., Gosavi, S. A., Pawar, S. S., Jadhav, G. P. (2014). Synthesis, isolation, characterisation and quantification of process related impurity of zidovudine. Rasayan Journal Chemistry. 2014; 7(2): 181-189.
- 17. Guidance for Industry: Q1A(R2) Stability Testing of New Drug Substances and Products, United States Department of Health and Human Services, Food and Drug Administration, November 2003.
- 18. Gupta, A., Rawat, S., Gandhi, M., Yadav, J.S. Method development and acid degradation study of doxofylline by RP-HPLC and LC-MS/MS. Asian Journal of Pharmaceutical Analysis. 2011; 1(1): 10-13.
- 19. Holm, R., Elder, and D. P. Analytical advances in pharmaceutical impurity profiling. European Journal of Pharmaceutical Sciences, 2016; 87: 118-135.
- Liu, M., Wang, J., Liu, P. HPLC method development, validation, and impurity characterization of a potent antitumor nucleoside, T-dCyd (NSC 764276). Journal of Pharmaceutical and Biomedical Analysis,
 Swathi, P., Rajeswar Dutt, K., V Rao, K. N., Alagar Raja, M. RP-HPLC Method development and validation for estimation of Sofosbuvir in pure and tablet dosage form. Asian Journal of Pharmacy and Technology. 2017; 7 (3): 153-156.
- 21. Prakash, S. S., Kalyan, K., Raju, S.A., Danki, L.S. Development and validation of spectrophotometric methods for the estimation of Gemcitabine in bulk drug and its pharmaceutical formulations. Research Journal of Pharmacy and Technology. 2011; 4(6): 951-954.
- 22. Annapurna, M. M., Baswani R., Pradhan D.P. New Stability Indicating RP-UFLC Method for the Determination of Flucytosine An Anti-Fungal Agent. Acta Scientific Pharmaceutical Sciences, 2019; 3(5): 84-90.
- 23. Satyanarayana, L., Naidu, S.V., Narasimha Rao, M., Reddy Suma Latha. The estimation of Nilotinib in capsule dosage form by RP-HPLC. Asian Journal of Pharmaceutical Analysis. 2011; 1(4): 100-102.