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Abstract- A Matroid is a structure that generalizes the properties of independence . The name ‘Matroid ‘ 

suggests a structure related to a matrix and indeed , Matroids were introduced by Whiteney in 1938 to provide 

a unifying abstract treatment of dependence in linear algebra and graph theory ; Relevant applications are 

found in graph theory and linear Algebra. There are several ways to define a Matroid, each related to the 

concept of independence. A Characteristic of matroid is that they can be defined on many different be it 

equivalent ways . This paper will focus on the definitions of matrvids in terms of independent sets, bases, the 

rank function and cycles. This paper consists of preliminaries and each of the rest casists of a particular 

definition of Matroid and its application in graph theory and linear Algebra. Here we observe how both graphs 

and Matroids can be viewed as Matrices. 
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Introduction 

 We first familiar with the concept of a graph and then begin to in copration graphs in to Matroids theory.  

 

Definition 1:- 

A Simple graph G is a non empty set of finite set of disordered pairs of elements called edge  [4] 

 
fig-1 Graph G 

 

In figure 1 , the set of vertices V (G) are a {1,2,3,4,5} and the set of edges E(G) are {p,q,r,s,t,u,v}. Matroids focus on 

the set of edges,  E(G) , as the elements of a matroid. 

 

Definition 2 :- 

Given the distinct  vertices p0 , p1 , p2 ……………..pm , a path is closed if p0 = pm . A closed path is also known as 

cycle in graph theory [4]  

 

Definition 3 :-  

A connected graph having no cycles is a tree while the union of trees is a forest . Clearly graph is a forest. Iff it has no 

cycles. 

Definition 4 :- 

 A spannig tree of a connected graph G is a subgraph T of G such that T is a tree and V(T) = V(G) [4] 

 

Basic Linear Algebra 

 A is a 5x8 matrix and its column vectors are R5 . The set of column vectors of the matrix A are {a,b,c,d,e,f,g,h} we 

will focus on the set of column vectors in a matrix as Two elements of a matroid. 
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Bases  

Definition 5 

 A Matroid M consist of a non-empty finite set E and a non-empty cellectorn  P  A subset of E , called base 

satisfying the following proportion [1] 

P1 No base properly contains another base  

P2  if P1 and P2 are base and if {e} is any element of P1 , then there is an element  F  of P2 such that     P1 – {e} U 

{f} is also a base.  

P2 is known as the exchange property. This property state that if an element is removed from P1 then there exists an 

element is formed when that element is added to P(i) , we can use this priporla P(ii) to show that every base in a 

matroid has the some number of element  

Theorem 1  Every base of  a matroid has the equal and same of element  

Proof :  Let us suppose  that the two base of a matorid M, P1 and P2 contain . P2  such that a new base P3  is formed  

By observing the set of bases losted  above. We can see  that P(i)is satisfied because no base property contains another 

base . We can now demonstrate P(ii) by using this property with two bases . if we choose P1 = {p,q,r,s} and  P2 = 

{r,u,p,t} then we can see the spanning tree of P1 and P2 in fig 2 and 3   different number of elements Such that |𝑝1| <
|𝑝2| . Now assume that there is equal and same element , {e} ∈ M , such that e1∈  p1 , but e1∉ p2 . If we diminish {e1} 

from p1 , then by p(ii), we know there  e2∈  p2 , but e2∉ p1 such that p3 = p1 / {e1} , ∪  { e2 } . Where  p3 is a base in M. 

There fore   |𝑝1| =  |𝑝2| but that  |𝑝2|  ≠  |𝑝1| = |𝑝3| 
Now we continue the process of exchanging elements defined by the property p(ii) , n  number of times then there will 

be no element initially in p1 that is not in the base pn. Therefore for all e ∈ pn the element e is also in p2 and thus pn⊆ 

p2 . From p(i) we know that no base property contains another base . This is a contradiction. 

There fore every base has two equal and same numbers of elements. 

 

Definition 6 

Let us suppose G be a graph with n vertices . A spanning tree is a connected sub graph  that uses all vertices of G that 

has n-1 edges [4] 

If we refer back to fig 1 the base of the graph G are {p,q,r,s}, {p,t,s,r}, {q,r,s,t}, {q,p,t,s}, {r,q,p,t},{r,q,u,t}, 

{r,s,u,p},{r,v,p,t}, {r,v,u,t}  

An example in graph theorems  

Let us take a base of our matroid to be a spanning tree of G. Here given a definition of Spanning tree

 
              

             

 

 

 

 

 

 

 

 

 

 

  

 

Fig 2. The Spanning Tree P1 
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Here we have to note that each spanning tree has 5 vertices and 4 edge .we can demonstrate P(ii) by diminishing an 

element {P} form P1, and then there exists an element in P2 such that a new base is created  P3 = P1 /{P}U{t}. fig 4 

shows the new base P3 

 
Fig- 4 The spanning Tree P3 

 

A similar computation work for any chace of base Because we take the spanning trees of a graph to be the based of a 

matroids , we can canclude that the base of a matroid have the same number of elements and by the definition of a 

spanning has n-1 element .(if there are tree n vertices). 

Independent sets in graph theory  

Let us take independent sets of a graph to be sets of edges in a graph that do not contain a cycle . In graph theory , a 

cycle is a closed path .  Another definition of independent set in graph theory uses forests which is defined as follows? 

 Definition  7 

A forest is a graph that do not contains cycle . A connected forest is a tree. 

We may say that the independent set of a graph are the edge set of the forests contained in the graph Fig – 5                                                                                            

                                                                                                                     

 

Fig- 6- An example of a forest in G 

Vertex – edge incidence matrix 

Now we are going to link graph theory and linear algebra by translating a graph to a unique matrix and vice versa 

.Using the language of matroids to motivate our discussion.The vertex edge inerdence matrix demonstrate the relation 

ship between a matrix  and a graph  . The following is a formed definition of a vertex edge incidence matrix given by 

james oxley. 

Theorem Let G be a graph and AG be its vertex- edge incidence matrix, then the entries of AG are vlewed modulo (2) 

, its vector matroids M[AG] has as its independent sets all of E(G) that do not contain the edge of a cycle  then 

M[AG] = M[G] and every graph matroid is binary[3] 

The  idea of a matrix being viewd mod (2) means that the enteries of the matrix are either 0 or 1 . 

Now the example of a vertex edge incidence matrix using the graph in fig 9.  

Fig 3. The Spanning Tree P2 
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Fig 7 

 

If an edge and a vertex are incident on a graph the corresponding entry in the matrix is 1. Otherwise , if an edge and 

vertex are not incident then the corresponding entry in the matrix is 0. 

 

                                                        
 

We may take a relationship between graphs and matrices . in the vertex – edge incidence matrix if we may see that the 

rank of the set {a,e,f} is 2 because any subset containg two elements does not contain a cycle. In thegraph in fig 9  . 

We can see that the set  {a,e,f} is a cycle the sum of the column vectore corresponding to the set of edges in our 

example is  

1  1                    0                   0 

1                0                   1                   0 

0        +      0         +        0           =     0 

0                0                   0                   0 

0              1                  1                 0 

   

 

 

 

We may also see that this set of vectors is minimally dependent . If we take any one vector from the set the become an 

independent set.  

The rank of the column vectors corresponding to the set {a,e,f } is  also two , because any subset of column  vectors , 

containing two elements does not contain a cycle. 

One base of G is the set of edges {a,b,c,d} . 

 

The corresponding vectors are  

           1  1                    0                   0 

            1                0                   1                   0 

N =      0     ,          0          ,        0           ,       0 

            0                0                   0                   0 

           0              1                  1                 0 

 

 

We have see that the set of vectors are maximal independent set , because  
|𝑁| = r (N)   =  4. 

Therefor , the set of vectors , N is also a base. 

Here link between graph theory and linear algebra by using of matroids to motivate our discussion and generalize the 

properties of independence. 
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Conclusion 

We find that Matroid arises naturally in Combinatorial optimization and can be used as a frame work for approaching 

a diverse Variety of Combinatorial problems. We have discussed definition of matroids and its application in graph 

theory and Linear Algebra we have got  how both graphs and matroids can be viewed as matroids and also linked 

graph theory and Linear algebra by transtating a graph to a unique matrix and vice versa. 
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