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Abstract- In order to reduce the time the ship stays in the port, we consider the Ships containers to Storage 

areas Assignment Problem (SSAP) which finds an allocation of ship containers to storage area that minimizes 

the travelling time of the Reach Stacker and containers dispersion. In a first step, a Mixed Integer Linear 

Program model is presented to address the SSAP with a view to reduce both travelling time and containers 

dispersion while satisfying storage capacities when the containers of the same ship can be affected into one or 

two different storage areas. In a second step, the complexity of the SSAP is established by reduction from the 

Numerical Matching with Target Sum Problems where the containers of one ship can be partitioned into one 

or two different storage areas. Our mathematical model is illustrated with a real case study in the Tunisian 

port of Rades. 
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1. Introduction 

Increased by globalization and the intensification of competition, maritime transport has become a ubiquitous force in 

the supply chain over the last few decades as a result of the increase in world trade volume, its low cost of energy 

consumption and its adaptation to the volume of freight exchanged. The importance of maritime transport continues to 

grow, making it a credible and attractive alternative to air and ground transportation. It is with the introduction of 

containers since the 1950s that the containerization of goods has made it possible to standardize this mode of 

transport, thus accelerating the transfer of the goods from one mode of transport to another, to lighten the various 

operations in container terminals and thus increase the volume of goods transported. 

This containerization requires the proper operation of a container port terminal considered as an important link in the 

global logistics chain and constituting intermodal interfaces for the global transport network. Its competitiveness is 

mainly influenced by factors such as total time spent by ships at port, loading and unloading time, container transfer 

time, etc. 

Several problems may arise during core activities at a port terminal, namely: planning problems that arise either in the 

dock area (such as berth allocation problems, container stowage and dock crane planning) or in the courtyard area 

(scheduling of yard cranes, storage of containers and scheduling of container vehicles). 

Problems of allocating berths, transferring and storing containers are considered to be the major problems encountered 

in the various container port terminals. Otherwise, a good allocation of the containers to the storage areas will also 

minimize the time required for receiving and transferring operations using the Reach Stackers or others. However, in 

order to be competitive, port authorities must optimize their logistical resources and resolve not only problems in the 

dock area but also those that appear in the courtyard area, in order to increase their port productivity, reduce 

turnaround times and increase their incomes, while keeping customer satisfaction at a desired level. So the 

performance of a container terminal is not limited to dock planning problems, but it also encompasses planning 

problems in the courtyard. 

This paper examines the complexity of the SSAP by reduction from the numerical Matching with Target Sum 

Problems and with the aim of minimizing the traveling time of containers unloaded between the berth and the storage 

area as well as decreasing the dispersion of each ship containers in the storage areas. To address these problems, we 

present a mathematical model solved using CPLEX.  

The outline of the paper including a review of the literature is provided in section 2. In section 3 a description of the 

SSAP and its mathematical model are presented in case of one or two consecutive storage areas. A proof of 

complexity for this problem is established. Section 4 presents the real example from the port of Radès, in Tunisia. 

Finally, concluding remarks and directions for future research are suggested in Section 5. 
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2. Literature review 

Shipping lines are mainly concerned with the waiting time and berthing time of the ship at the port [1]. Consequently, 

many constraints must be taken into consideration before the assignment of containers of storage areas. For example, 

there are some characteristics of the storage area which need to be taken into account such as the travelling time 

between the berth and the storage area, the capacity of storage area, the velocity and the number of the yard crane, 

dispersion containers, etc. 

However, in practice, the SSAP consists in assigning all the containers to the storage area. Many researchers have 

investigated several methods in an attempt to find a best solution to the SSAP. For example, Kim and Kim [2] devised 

a method for determining the optimal amount of storage space and the optimal number of transfer cranes for handling 

import containers. Lee et al. [3] proposed an integrated model for yard truck scheduling and storage allocation for 

import containers. This problem was formulated as a MIP with the objective of minimizing the make-span of 

operations and to solve this problem a Genetic Algorithm was developed.  

Preston and Kozan [1] formulated a mathematical optimization model to minimize the time spent during the transfer 

of containers from the storage area to the ship and vice versa. A Genetic Algorithm was used to address this problem. 

Kim and Kim [4] determined the optimal routes for a single Straddle Carries SC to retrieve containers which need to 

be loaded on a ship from the stock more efficiently. Their objective was to reduce the total travelling time of the 

Straddle Carries. As for Zhang et al.[5],they studied the Storage Space Allocation Problem in the storage yards of a 

terminal so that the total transportation distance for moving containers between blocks and ship berthing locations is 

reduced. 

Lee et al. [6] devised an approach that integrates the problems of yard truck scheduling and storage allocation, their 

work sought to minimize the heavy sum of the total delay of requests and the total travel time of yard trucks, and to 

solve this problem a hybrid algorithm was developed. Moussi et al. [7] examined the Container Stacking Problem and 

suggested a model that would determine the optimal storage strategy for various container-handling schedules.  

Our work seeks to decrease the traveling time of containers unloaded between the berth and the storage area and to 

reduce also the dispersion of containers in the storage area. In light of the seminal work of Zeinebou and Abdellatif 

[8], we propose two mathematical models in this paper. Our models have distinct additional characteristics compared 

to that adopted by Zeinebou and Abdellatif [8]. In fact, our models find an independent optimal solution for the SSA 

problems. A new formulation of the SSAP problem where the travelling time is modelled as a variable is presented. 

Besides, the minimisation of the dispersion of containers in the storage areas is guaranteed in the SSAP model which 

rendered evident the complexity of the problems.  

Many effort has been made in order to solve many optimization problems using Enumerative methods or Heuristics 

and Meta-Heuristics methods. Yet, heuristic and meta-heuristic methods did not guarantee optimality; they only 

provided an approximate solution searching through the set of feasible ones. They were usually time-consuming, 

especially for big problems. More recently, optimization problems have been classified according to their 

computational complexity and the difficulty to find the optimal solution. 

Indeed, several works addressed the problem of complexity. For example; Kamoun and Sriskandarajah [9] highlighted 

the complexity of scheduling jobs in the repetitive manufacturing system while Lawler et al. [10] presented the 

complexity of sequencing and scheduling. Matsuo [11] described the complexity of cyclical sequencing problems in 

the two permutation- machines flow shop. Similarly, Munier [12] pinpointed the complexity of a cyclic scheduling 

problem with identical machine; Hall et al. [13] dealt with scheduling in robotic cell and Elloumi et al. [14], examined 

the classroom assignment problem. Kamoun and Sriskandarajah [9], Hall et al. [13] and Elloumi et al. [14] used the 

Numerical Matching with Target Sums problem in their proofs of NP-hardness by reduction.  

Based on the work of Elloumi et al. [14], we proved that the SSA problem is strongly NP-hard by the reduction from 

the Numerical with Target Sums problem. 

 

3. Finding  an Optimal Assignment of Ships Containers to Storage Areas:  The complexity of assigning 

Ships to the Storage Area 

In this section, we seek to find an optimal assignment of ships containers in terminals to storage areas so that the 

travelling time and containers dispersion are minimized. In this respect, we propose a mathematical model and, then, 

study the complexity of assigning ships containers in terminals to storage areas. 

3.1.  The Mathematical Model  

Our mathematical model has already been presented in one of our works  kallel et al. [15] and it aims to minimize the 

transfer time of containers from the berth to the storage area. This will affect the time taken by the whole process i.e. 

while the containers are unloaded from the berth and then allocated to the storage areas. Simultaneously, our model 

would minimize the dispersion of all the containers in the ship to the storage areas.  

As we have already indicated our mathematical model was presented in one of our research works and in this part we 

will just recall it in order to be able to follow the study of its complexity 

a) Parameters 
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i : The index of all the berths, i (= 1…I) ∈ B 

j : The index of all the ships,  j (=1…T) ∈ V 

z : The index of all the storage areas, z (=1…A) ∈ D 

c : The index of moving all containers, c (=1…C) ∈  F 

𝑛 : The index of all the Reach Stacker, 𝑛 (= 1…..N) ∈ E 

B: The set of the berths.  

V: The sets of all the ships. 

D: The set of storage areas with A=|D|. 

       𝐃𝟏: The set of storage areas with D1 = {1, 3, 5 … , A − 2} ∈ D, if A is odd. 

       𝐃𝟏: The set of storage areas with  D1 = {1, 3, 5 … , A − 1} ∈ D, if A is even. 

       𝐃𝟐: The set of storage areas with  D2 = {D\D1\{A}} = {2,4,6, … , A − 1} ∈ D, if A is odd. 

       𝐃𝟐: The set of storage areas with  D2 = {D\D1} =  {2,4,6, … , A} ∈ D, if  A is even. 

F: The set of  all containers.  

𝑽𝒏: The velocity of the Reach stacker..  

lock1: This is unload time for the Reach stacker  to hold on to a container before taking up.  

lock2: This is the load time required for the Reach Stacker to hold on to a container before taking up.  

diz: The distance between the berth i and the storage area z. 

Cj: The number of containers from the ship j. 

      Tiz: The traveling time of a container from the berth i until the storage area z, and is given by the formula:     𝑇𝑖𝑧 =

𝑙𝑜𝑐𝑘1  +
𝑑𝑖𝑧

𝑉𝑛  + 𝑙𝑜𝑐𝑘2 

 

𝑿𝒊𝒋
∗ : 𝑡ℎ𝑖𝑠 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑎𝑠𝑠𝑖𝑔𝑛𝑖𝑛𝑔 𝑠ℎ𝑖𝑝𝑠 𝑡𝑜 𝑏𝑒𝑟𝑡ℎ𝑠, 𝑖𝑠 𝑒𝑞𝑢𝑎𝑙 1 if the ship 𝑗 from the import set is assigned  

to berth 𝑖, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      

Qz: The capacity of storage area z. 

M: A very large number. 

𝑪𝒋
′=M Cj     

b) Decision Variables  

𝑌𝑗𝑧 = 1 if the containers of ship j are allocated in storage area z.0 otherwise. 

𝑌𝑌𝑗𝑧 = 1 if the containers of ship j that will be affected in the storage area z and (z +1). 0 otherwise, for z ∈ D1. 

Note that we have added ZZjz for the linearization of a non linear product (CCjz * 𝑌𝑌𝑗𝑧).  

 𝑍𝑍𝑗𝑧 = The containers with the ship j that will be affected in the storage area z if  𝑌𝑌𝑗𝑧 = 1. 

Cjz: The containers with the ship j that will be affected in the storage area z, if 𝑌𝑗𝑧 = 1. 

CCjz: The containers with the ship j that will be affected in the storage area z, if  𝑌𝑌𝑗𝑧 = 1. 

This problem can be presented as follows : 

 

𝐅 =  𝐌𝐢𝐧 ∑ ∑ ∑  

𝒛∈𝑫𝒋 ∈𝑽𝒊 ∈𝑩

 𝑻𝒊𝒛  ∗  𝑪𝒋 ∗  𝑿𝒊𝒋
∗ ∗ 𝒀𝒋𝒛  + ∑ ∑ ∑  (𝑻𝒊𝒛

𝒛∈𝑫𝟏𝒋 ∈𝑽𝒊 ∈𝑩

 +𝑻𝒊(𝒛+𝟏))/𝟐 ∗ 𝑪′
𝒋 ∗ 𝑿𝒊𝒋

∗ ∗ 𝒀𝒀𝒋𝒛 (𝟏) 

                               

Subject to : 

𝑪𝒋𝒛 ≤  𝑪𝒋 +  𝑴 ( 𝟏 −  𝒀𝒋𝒛) 

 

; ∀ 𝒋 ∈ 𝑽, 𝒛 ∈ 𝑫 (𝟐) 

𝑪𝒋𝒛 +  𝑴 ( 𝟏 −  𝒀𝒋𝒛) ≥  𝑪𝒋 

 

; ∀ 𝒋 ∈ 𝑽, 𝒛 ∈ 𝑫 (𝟑) 

𝑪𝑪𝒋𝒛 + 𝑪𝑪𝒋(𝒛+𝟏) ≤  𝑪𝒋 +  𝑴 ( 𝟏 −  𝒀𝒀𝒋𝒛) 

 

; ∀ 𝒋 ∈ 𝑽, 𝒛 ∈ 𝑫𝟏 (𝟒) 

𝑪𝑪𝒋𝒛 + 𝑪𝑪𝒋(𝒛+𝟏) +  𝑴 ( 𝟏 −  𝒀𝒀𝒋𝒛) ≥  𝑪𝒋    

         

; ∀ 𝒋 ∈ 𝑽,   𝒛 ∈  𝑫𝟏 (𝟓) 

∑ 𝒀𝒋𝒛 + ∑     𝒀𝒀𝒋𝒛 =   𝟏

𝒛∈𝑫𝟏𝒛∈𝑫

 

 

; ∀  𝒋 ∈ 𝑽 (𝟔) 

∑     𝑪𝒋 ∗ 𝒀𝒋𝒛 + ∑     𝒁𝒁𝒋𝒛  ≤   𝑸𝒛

𝒋∈𝑽𝒋∈𝑽

 

 

; ∀  𝒛 ∈ 𝑫𝟏 (𝟕) 
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𝒁𝒁𝒋𝒛  ≤  𝑪𝑪𝒋𝒛 +  𝑴 ( 𝟏 −  𝒀𝒀𝒋𝒛) 

 

; ∀ 𝒋 ∈ 𝑽, 𝒛 ∈ 𝑫𝟏 (𝟖) 

𝒁𝒁𝒋𝒛 +  𝑴 ( 𝟏 −  𝒀𝒀𝒋𝒛) ≥  𝑪𝑪𝒋𝒛 

 

; ∀ 𝒋 ∈ 𝑽,   𝒛 ∈ 𝑫𝟏 (𝟗) 

𝒁𝒁𝒋𝒛  ≤  𝑴  𝒀𝒀𝒋𝒛 

 

; ∀ 𝒋 ∈ 𝑽, 𝒛 ∈ 𝑫𝟏 (𝟏𝟎) 

∑     𝑪𝒋 ∗ 𝒀𝒋𝒛 + ∑     𝒁𝒁𝒋𝒛  ≤   𝑸𝒛

𝒋∈𝑽𝒋∈𝑽

 

 

; ∀  𝒛 ∈ 𝑫𝟐 (𝟏𝟏) 

𝒁𝒁𝒋𝒛  ≤  𝑪𝑪𝒋𝒛 +  𝑴 ( 𝟏 −  𝒀𝒀𝒋(𝒛−𝟏)) 

 

; ∀ 𝒋 ∈ 𝑽, 𝒛 ∈ 𝑫𝟐 (𝟏𝟐) 

𝒁𝒁𝒋𝒛 +  𝑴 ( 𝟏 −  𝒀𝒀𝒋(𝒛−𝟏)) ≥  𝑪𝑪𝒋𝒛 

 

; ∀ 𝒋 ∈ 𝑽,   𝒛 ∈ 𝑫𝟐 (𝟏𝟑) 

𝒁𝒁𝒋𝒛  ≤  𝑴  𝒀𝒀𝒋(𝒛−𝟏) 

 

; ∀ 𝒋 ∈ 𝑽, 𝒛 ∈ 𝑫𝟐 (𝟏𝟒) 

∑     𝑪𝒋 ∗ 𝒀𝒋𝒛  ≤   𝑸𝒛

𝒋∈𝑽

 

 

; 𝒛 =  𝑨 ;  𝒊𝒇 𝑨 𝒊𝒔 𝒐𝒅𝒅 (𝟏𝟓) 

𝒀𝒋𝒛, 𝒀𝒀𝒋𝒛  ∈  {𝟎, 𝟏}     

                                               

; ∀ 𝒋 ∈ 𝑽, 𝒛 ∈ 𝑫 (𝟏𝟔) 

𝑪𝒋𝒛 , 𝑪𝑪𝒋𝒛 , 𝒁𝒁𝒋𝒛 ∈   ℝ         ; ∀ 𝒋 ∈ 𝑽, 𝒛 ∈ 𝑫 (𝟏𝟕) 

 

 

• The objective function (1) aims to minimize the transfer time of the containers as well as their dispersion in 

the storage areas.  

• Constraints (2) and (3) ensure that all containers Cj are affected to one storage area z if Yjz  is equal to 1. 

• Constraints (4) and (5) guarantee that all containers Cj are affected to two storage areas z and (z+1), if YYjz is 

equal 1.  

• Constraint (6) guarantee that each ship j is affected to one storage area, or to two storage areas.  

• Constraint (7) ensures that all the containers of the ship j which are assigned to one storage area z or to two 

storage areas z and (z + 1) for all odd number of z. 

• Constraints (8), (9) and (10) are the linearization constraints for the storage areas D1.  

• Constraint (11) guarantee that all the containers of  the ship j which are assigned to one storage area z, or to 

two storage areas(z-1) and z  must not exceed the total capacity of the storage area z, ( for all even  number 

of z). 

• Constraints (12), (13) and (14) are the linearization constraints for the storage areas D2. 

• Constraint (15) ensures that all the containers of the ship j are assigned to one storage area z. They must not 

exceed the total capacity of the storage area z, and z=A if A is odd.  

• Constraint (16) and (17) defines the decision variables.  

 

3.2. The Complexity of Assigning Ships to the Storage Areas : 

We consider the Bin Packing Problem (BPP) where n bins with different capacities are to be filled with m items 

having different sizes. The problem involves packing the items into the bins in such a way that the capacity of each 

bin does not exceed a given size. The BPP has been extensively studied in the literature taking into account all its 

variants ( [16] and [17]). 

With regard to our real case, the bins play the role of storage areas with different capacities Qz, z (=1… A) ∈D , while 

the items are considered as ships having different sizes (number of containers) Cj,  j (=1…T) ∈  V. 

Our objective is to assign the ships (items) to the storage areas (bins) in such a way that the total size of ships assigned 

to a storage area does not exceed its capacity while minimizing the traveling time from berths to the storage area. 

In the following instance of our problem (F), we have an optimal solution if each ship is assigned to only one storage 

area.  

The following are the values for different parameters: 

▪ Tiz=1, for all i and for all z, 
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▪  Cj=1, for all j, 

 

▪ L= ∑ (𝑛
𝑖=1 𝑋𝑖 +  𝑌𝑖) where, Xi and Yi are parameters from the Numerical Matching with Target Sums (NMTS) 

problem, 
 

▪  𝐶𝑗
′ =  𝑀 ∗ 𝐶𝑗,  where M = 4L * n, 

 

▪   𝑿𝒋𝒋
∗  =1 and j =1,2,…n (we take the case where the number of berth i is equal to the number of ships j then i = 

j),  

 

▪ 𝒀𝒋𝒛 =1 if the ships j is assigned to the storage area z and 0 otherwise (z ∈ D),  

 

▪ 𝒀𝒀𝒋𝒛  =1 if the ships j is assigned to the storage area z and  (z+1), 0 otherwise (z ∈ D1). 

The following NP hard in the strong sense of the problem is used to show the complexity of the ships assignment. 

 

Numerical Matching with Target Sums (NMTS) 

Let X={ X1 , X2 ,…,Xn }, Y={ Y1 , Y2 ,…, Yn },  Q={Q1 ,Q2 ,…, Qn } be sets of positive numbers. Can X Ս Y  be 

partitioned into n disjoint subsets Γ1,Γ2,…,Γn with Γk = {Xi(k) ,  Yi(k)} such that Qk = Xi(k) + Yi(k), k=1,2,…,n ?. 

Clearly, the condition  

∑(

𝑛

𝑖=1

𝑋𝑖  +  𝑌𝑖 − 𝑸𝑖) = 0 

Is necessary for a ‘yes’ answer. Since it is readily proved, we may assume that it always holds [14]. 

The construction of the presented instance from the Numerical Matching with Target Sums (NMTS) problem is done 

in polynomial time. Therefore, we need to show that there is a solution to (F) if and only if there is a solution to the 

NMTS problem. 

Let’s consider the following instance of the problem (F) constructed from the NMTS problem. 

There are two sets of ships. Each contains n ships with the following number of containers: 

▪ Ships of type I with size : 

𝑪𝒎
𝑰 = 𝑳 + 𝑿𝒎 ;     𝑚 = 1 … . 𝑛 

▪ Ships of type 𝜫 with size : 

𝑪𝒎
𝜫 = 𝟐𝑳 + 𝒀𝒎 ;     𝑚 = 1 … . 𝑛 

The set of storage areas has the following capacities: 

 𝑸𝑸𝒛 =  𝟑𝑳 +  𝑸𝒛  ;   𝑧 = 1, … , 𝑛 

 

 

If part: 

If there is a solution to NMTS, there exist a solution to our problem (F),  with one ship of type I and one ship of type 

𝜫 which are stored in the same storage area, such that :  

𝑳 + 𝑿𝒎 + 𝟐𝑳 + 𝒀𝒎 =  𝟑𝑳 +  𝑸𝒛 

And the objective function is equal to  3𝑛 𝐿 + ∑ (𝑛
𝑖=1 𝑋𝑖 +  𝑌𝑖). 

 

Only if part: 

We need to prove that there is a solution to our problem (F) with the objective function less or equal to 3𝑛 𝐿 +
∑ (𝑛

𝑖=1 𝑋𝑖  +  𝑌𝑖), only if there exists a solution to NMTS. 

Claim 1: 

In an optimal solution, all the ships are not assigned to two storage areas. 

Proof:  

If all YYjz = 0, in this case all the ships are assigned in one storage area and the objective function can be equal to 

3𝑛 𝐿 + ∑ (𝑛
𝑖=1 𝑋𝑖 +  𝑌𝑖). 

. 

 If  𝒀𝒀𝒋𝒛  =1 for some j and z. In this case the ship is assigned in two storage areas and the objective function will be 

greater or equal to 4 𝐿 ∗ 𝑛 > 3𝑛 𝐿 + ∑ (𝑛
𝑖=1 𝑋𝑖 +  𝑌𝑖). 

 

Claim 2: 

In a feasible solution, all storage areas are full. 
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Proof:  

The total size of the ships is equal to: 

𝑛𝐿 + ∑ 𝑿𝒎 +  2 𝑛𝐿 + ∑ 𝒀𝒎

𝑛

𝑚=1

=  3 𝑛𝐿 + ∑ 𝑿𝒎

𝑛

𝑚=1

+ ∑ 𝒀𝒎

𝑛

𝑚=1

𝑛

𝑚=1

 

The total capacity of the storage areas is equal to: 

3 𝑛𝐿 +  ∑ 𝑸𝒛 

𝑛

𝑧=1

𝑠𝑖𝑛𝑐𝑒 ∑ 𝑿𝒎

𝑛

𝑚=1

+  ∑ 𝒀𝒎

𝑛

𝑚=1

=   ∑ 𝑸𝒁

𝑛

𝑍=1

 

 Is assumed as given in the NMTS problem. This result completes the proof of Claim 2.  

 

 

 

Claim 3: 

In a feasible solution, exactly one ship of type I and one ship of type Π are assigned to one storage area, respectively. 

Proof: 

Assigning two or more ships of type Π to a storage area is not feasible as the size of the ships exceeds the capacity by: 

𝟒𝑳 +  𝑿𝒊(𝒎) + 𝒀𝒊(𝒎) − 𝟑𝑳 − 𝑸𝒛 > 0 

Or equivalently  

𝑳 +  𝑿𝒊(𝒎) + 𝒀𝒊(𝒎) − 𝑸𝒛 > 0 

Since the number of the storage areas is equal to the number of ships of type Π, we cannot have a storage area which 

is not assigned a ship of type Π. 

Therefore, one portion of a storage area holds exactly one ship of type Π . 

If we do not assign any ship of type Ӏ to a storage area, we have no feasible solution. One ship of type Π is not 

enough. 

If we assign two or more ships of type Ӏ to a storage area, this assignment is not feasible. The capacity is exceeded by 

at least: 

𝑳 +  𝑿𝒊(𝒎) + 𝒀𝒊(𝒎) − 𝑸𝒛 > 0 

Therefore, one ship of type Ӏ and one ship of type Π are assigned to each storage area. 

 

Theorem 1: The problem (F) is NP-hard in the strong sense. 

Proof: 

It is easy to show that our problem (F) belongs to the NP class. Given an assignment of ship containers to storage 

areas, we can check in polynomial time whether this assignment is feasible. 

If we have a solution to the NMTS problem, then it is clear that we have a solution to (F). There is a solution where 

each ship of size L+ Xm  , is joined with another ship of size 2L+ Ym . 

They are both assigned to a storage area of capacity 3L+ Qz  ;  z= 1…n , where  

𝐋 =  ∑ 𝑸𝒛

𝑛

𝑧=1

 

Furthermore,  using Claim 3,we can conclude that we have a feasible solution of (F) where a ship of size L+ X i(m) and 

a ship of size 2L+ Yi(m)  , are assigned to a storage area with a capacity of 3L+ Qz  if  3L+Q z  ˃ 3L+ Xi(m)  + Yi(m)   . 

This causes an empty space in the storage area, which is prohibited by Claim 2. Besides, let’s suppose that the storage 

area of capacity 3L+ Qz  , is assigned to a ship of size L+ Xi(m) and another ship of size 2L+ Yi(m)  such that: 

3L+ Qz  ˂ L+ Xi(m)  +2L+ Yi(m) .This case is not feasible as the capacity of the storage area is exceeded. 

Therefore, there is a feasible solution to (F) only if we have Xi(m)  + Yi(m)   = Qz . In other words, there is a solution to 

the NMTS problem. This completes the proof of the theorem.  

4. Container transfer and storage problem: A real case on the port  

      Before presenting our results of the problem of transfer and storage of containers, we will first present some 

information on the port of Radès, we have learned that the various operations of unloading, loading and handling 

within this port in export or import are handled by the STAM dealer. We were also able to detect that there is no 

principle used for the assignment of containers to storage areas. 

    In order to use the mathematical model of container transfer and storage, we relied on real data recorded during the 

first 10 days of November 2021 at the port of Radès. But before providing these data, we will briefly present the 

mechanism for unloading and transferring containers from the ship to the storage area adopted by STAM. Note that in 

this part we will only focus on container unloading and transfer operations in the case of importing containers. 
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     The operation of unloading the container from the ship starts from the container ship already docked on the berth 

using a quay crane, then it is placed on the berth. The average time required for a crane to hook onto the container (20 

feet) and place it on the quay is ten minutes.  

A Reach Stacker will then take care of moving this container and putting it on a tray (it takes an average of five 

minutes), which will then be tracked by a tractor (RO RO Truck) to the storage area (whose speed does not exceed 40 

km/h). Then, the container will be unloaded by another Reach Stacker in the pick-up area that is part of the storage 

area (this operation takes an average of five minutes). 

At the port of Rades there are seven storage areas reserved for containers. The capacity of each storage area being 

respectively, zone 1: 500 TEU, Zone 2: 1400 TEU, Zone 3: 800 TEU, Zone 4: 2200 TEU , Zone 5: 800 TEU, Zone 6: 

2400 TEU and Zone 7: 2300 TEU, (note that a 20-feet container is worth 1 TEU and a 40-feet container is worth 2 

TEU) 

The distance in meters separating the three berths dedicated to container ships and the seven container storage areas 

are presented in the following table. 

 

 

 Berth 1 Berth 2 Berth 3 

Storage Area 1 520m 250m 42m 

Storage Area 2 605m 344m 108m 

Storage Area 3 320m 63m 48m 

Storage Area 4 625m 375m 204m 

Storage Area 5 42m 172m 375m 

Storage Area 6 306m 203m 344m 

Storage Area 465m 406m 562m 

Table 1 : Distance between berth and storage area 

 

Now based on these different data we can calculate the transfer time of a container based on the formula already 

presented: 

 𝑻𝒊𝒛= 𝒍𝒐𝒄𝒌𝟏 + (𝒅𝒊𝒛/𝑽𝒏 ) +𝒍𝒐𝒄𝒌𝟐. 

The values of the traveling time of a container of 1 TEU (20') are presented in minutes in the following table. 

𝑻𝒊𝒛 Berth 1 Berth 2 Berth 3 

 

Storage Area 1 

20.780mn 20.375mn 20.063mn 

 

Storage Area 2 

20.907mn 20.516mn 20.162mn 

 

Storage Area 3 

20.480mn 20.094mn 20.072mn 

 

Storage Area 4 

20.937mn 20.562mn 20.306mn 

 

Storage Area 5 

20.063mn 20.258mn 20.562mn 

 

Storage Area 6 

20.459mn 20.304mn 20.516mn 

 

Storage Area 7 

20.697mn 20.609mn 20.843mn 

Table 2: The values in minutes of the transfer time from the berth to the storage area 

 

Note that according to STAM the value of the traveling time for a 40' container (2 TEU) is considered almost double 

that of a 20' container (1 TEU). 

From the data collected from the port of Radès, we will first start our assignment of containers to storage areas by 

taking the date of 01/11/2021 as a start date of assignment while taking into account the number of TEUs available in 

each storage area and the allocation of ships to berths which is already given by the port authorities. 
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At the beginning of our first assignment plan, we should calculate the number of TEUs available in each storage area. 

For this we relied on the latest container assignment results to the storage areas for the month of October as well as on 

the actual remaining capacity in TEUs in each zone as of 01/11/2021 

 
Storage 

Area 1 

Storage 

Area 2 

Storage 

Area 3 

Storage 

Area 4 

Storage 

Area 5 

Storage 

Area 6 

Storage 

Area 7 

Storage 

capacity 
230 368 190 574 110 430 642 

Table 3: Capacity of storage areas in TEUs as of 01/11/2021 

 

Then we will present the number of containers to unload for each ship. The total containers to be unloaded for each 

ship is calculated in TEU (20'). 

 

 

Ship 

number 

 

Date 

assigned 

to the 

berth 

Number of containers to be 

unloaded for each ship 𝑪𝒋 

20 TEUs 40 TEUs 
Total 

TEUs 

1 
02/11/2021 

16:30 
150 

0 

 
150 

2 
03/11/2021 

13:40 
119 

95 

 
309 

3 
03/11/2021 

11:00 
215 

20 

 
255 

4 
05/11/2021 

8:00 
195 

67 

 
329 

5 
07/11/2021 

10:25 
98 

34 

 
166 

6 
08/11/2021 

22:00 
115 

87 

 
289 

7 
09/11/2021 

07:00 
256 

86 

 
428 

  
Total containers to be 

unloaded in TEUs 
1926 

Table 4: Number of containers to be unloaded in TEUs on 01/11/2021 

 

Let us indicate that the result of assignment of ships to berths is given by the port authorities is as follows 𝑿𝟐𝟏
∗ =

𝟏, 𝑿𝟑𝟐
∗ = 𝟏, 𝑿𝟏𝟑

∗ = 𝟏, 𝑿𝟐𝟒
∗ = 𝟏, 𝑿𝟏𝟓

∗ = 𝟏, 𝑿𝟑𝟔
∗ = 𝟏, 𝑿𝟐𝟕

∗ = 𝟏 

The result of assigning containers from the same ship to storage areas is obtained in a time of 0.094 seconds using 

CPLEX. It is given as follows: 

Y16 = 1, Y57 = 1, Y62 = 1, YY21 = 1, YY22 = 1, YY35 = 1, YY37 = 1, YY43 = 1  et YY46 = 1 

C16 = 150,  C57 = 166, C62 = 289, CC21 = 230, CC22 = 79, CC35 = 110, CC37 = 145, CC43 = 49  et CC46 = 280. 

The objective function in minutes is 𝐹 =  38447. 

This result of assigning containers to storage areas for each ship can be represented as follows. 
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Figure 1: Result of assigned ship containers to storage areas (in 1 TEU) 

 

We notice through this figure that the containers of the same ship are assigned to a single storage area. The containers 

of ship 1 and those of ship 5 and ship 6 are assigned to a single storage area while the containers of ships 2, 3, 4 and 7 

are assigned to two storage areas, and this subsequently allows the minimization of the dispersion of containers to 

storage areas as well as the reduction of traveling time from docks to storage areas. 

Thus the number of 20' and 40' size containers from the same ship which are assigned to the storage areas is presented 

in table 5. 

 

Ship  

 number 

assigned containers ships to storage areas 

Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7 

20' 40' 20' 40' 20' 40' 20' 40' 20' 40' 20' 40' 20' 40' 

1 0 0 0 0 0 0 0 0 0 0 150 0 0 0 

2 0 115 79 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 70 20 0 0 145 0 

4 0 0 0 0 49 0 0 0 0 0 146 67 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 98 34 

6 0 0 115 87 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 141 0 115 86 0 0 0 0 0 0 

 Totals 0 115 194 87 190 0 115 86 70 20 296 67 243 34 

Table 5: Number of containers per ship assigned to storage areas 

 

This result of assignment of the containers to the storage zones will be used later for the calculation of the transfer 

time of these containers. 

In this part, we presented the result of allocation of containers to storage areas.We will compare  our results obtained 

with those actually achieved at the port of Radès. 
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Table 6: Number of containers per ship assigned to storage areas according to STAM 

 

Through this table we can notice according to the assignment plan carried out at the port there are containers of the 

same ship which are assigned to four storage areas such as the contents of ships 1, 2, 4 and 5, and the contents of ships 

3 and 6 are assigned to five storage areas, on the other hand the containers of ship 7 are dispersed over six storage 

areas. 

The assignment results produced by our mathematical model and that carried out by the port authorities at the port of 

Rades can be illustrated as follows: 

  

Figure 2 Result of assigned containers ships to storage 

areas carried out at the port 

Figure 3: Result of assigned containers ships to 

storage areas according our mathematical model 

Through figures 2 and 3 we notice a great dispersion of the containers of the same ship when they are assigned by the 

port authorities to the storage areas, sometimes reaching six areas. This could be due to a poor container allocation 

policy and the lack of consideration of the transfer time when allocating containers from the berth to the storage area, 

which subsequently leads to an increase assignment time and consequently the container unloading time.  
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Ship 

numbe

r 

Number of containers to 

be unloaded for each 

ship 𝑪𝒋 
assigned of containers ships to storage areas 

20TEU

s 

40TEU

s 

Total 

TEU

s 

 

Area 1 

 

Area 2 

 

Area 3 

 

Area 4 

 

Area 5 

 

Area 6 

 

Area 7 

20

' 

40

' 
20' 

40

' 
20' 

40

' 

20

' 
40' 

20

' 

40

' 
20' 

40

' 
20' 40' 

1 150 0 150 20 0 65 0 37 0 0 0 28 0 0 0 0 0 

2 119 95 309 0 0 0 20 90 0 29 63 0 0 0 0 0 12 

3 215 20 255 78 0 30 0 42 3 0 0 39 0 26 17 0 0 

4 195 67 329 0 0 4 7 0 0 0 60 0 0 68 0 
12

3 
0 

5 98 34 166 0 0 58 6 0 0 0 17 0 0 23 11 17 0 

6 115 87 289 0 0 0 0 0 4 0 31 15 0 14 18 86 34 

7 256 86 428 0 47 83 0 0 0 0 18 5 0 26 0 
14

2 
21 

 Totals 1926 98 47 
24

0 
33 

16

9 
7 29 

18

9 
87 0 

15

7 
46 

36

8 
67 
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However, our results of assigning containers to storage areas obtained by our model allowed us to minimize the 

dispersion of containers belonging to the same ship to storage areas and which will allow us subsequently to reduce 

the transfer time as well as the unloading time of the containers. These two assignment results will allow us to deduce 

the variation in the transfer time per ship and subsequently that of all the ships which are presented below 

Ship number 

Transfer time 

according to STAM 

assignment results 

(in minutes) 

Transfer time 

according to the 

assignment results of 

our model 

(in minutes) 

Transfer time 

variation 

(in minutes) 

1 3051.742 3045.600 (-) 6.142 

2 6260.622 6207.288 (-) 53.334  

3 5241.087 5207.995 (-) 33.092 

4 6752.307 6669.726 (-) 82.581 

5 3447.852 3435.702 (-) 12.15 

6 5963.600 5826.818 (-) 136.782 

7 8820.432 8734.548 (-) 85.884 

Totaux  39537.642 39127.677 (-) 409.965 

Table 7: Variation in transfer time by ship 

 

This variation in the transfer time from containers to storage areas can also be shown in the following figure. 

 
Figure 4: Variation in container transfer time from ships to storage areas 

 

From table 7 and figure 4 we can notice a decrease in the transfer time of containers to the storage areas at the port of 

Radès. This drop is confirmed by a simple comparison between the results of our model and that of the transfer and 

storage of containers with the actual results carried out at the port of Radès by the port authorities. Thus, the total 

transfer time of containers from ships to storage areas at the port has decreased by 409 minutes, i.e. 6 hours and 50 

minutes, which saves time during unloading and the assignment of containers to storage areas. . This variation in the 

transfer time seems minimal for this case treated over a period of ten days at the port of Rades, but this value will be 

enormous if the number of days is increased, and which will subsequently have a significant impact on the length of 

stay of the ships at the berths and therefore in the port. Admittedly, minimizing the dispersion of containers from the 

same ship in storage areas will allow port authorities to easily locate containers from the same ship. In addition, 

minimizing the dispersion of containers belonging to the same customer will facilitate their search during their 

delivery and therefore their traceability.  

 

Conclusion  

Given that the problems of yard planning and more precisely the allocation of containers to storage areas are 

considered today as one of the most complex optimization problems when solving them, we have addressed in this 

article the problem of complexity of ship assignment in two consecutive storage areas. We also applied the 

mathematical model to a real case at the port of Rades which allowed us to compare our results with the assignment 

result that was actually achieved at the port. We have shown its advantages allowing the reduction of the transfer time 
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to the port as well as minimizing the dispersion of the containers belonging to the same ship in the storage areas. 

Solving larger instances of the ships to storage areas assignment requires the use of meta heuristics as solving tools 

due to the NP-hardeness of the problem. 
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