Thermal performance Evaluation of Split Fin Pattern and Parallel Horizontal Fin Pattern under Force Convection

Krishna Kumar

Doctoral Student
Mechanical Engineering Department,
Sardar Vallabhbhai National Institute Technology (SVNIT), Surat, India.

Abstract- Heat transfer is most important phenomenon as due to it temperature change occurs and so heat energy exchange happen also heat transfer is important in case of internal combustion engine, refrigeration, casting and welding process too. The fin is one of the unique applications of heat transfer to enhance heat transfer by increasing heat transfer are. The present work aims to fabricate split fin pattern and parallel horizontal fin pattern and compare their thermal performance under force convection condition.

Index Terms- Split Fin Pattern, Parallel Horizontal Fin, Force Convection, Heat Transfer, Temperature.

I. INTRODUCTION

Extended surfaces (or so-called fins) are often used when the warmth is to be dissipated from backyard boundaries with a greater rate. It represents the most realistic way considering Newton’s regulation of cooling states that the warmthness switch vicinity is at once proportional to the price of convective warmthness transfer. Subsequently, expand in the floor region will end result in amplify in the warmthness dissipation from the surface. The software of prolonged surfaces can be considered in all places there is a device of convective warmthness transfer, for instance, the condenser of air conditioners are made in a range of shapes and measurement even although the precept is to only extend the whole warmthness switch region the usage of aluminum fins. When the device is getting smaller, the warmth dissipation turns into extra imperative and as an alternative complicated due to the fact of house restrictions. However, the warmth is nevertheless dissipated by prolonged surfaces and taken away via distinctive slender tunnels. Azarkish et al. [1] optimized a longitudinal fin cross-sectional profile under natural convection and radiation. Kundu et al [2] proposed an analytical methodology to optimize a thin-fin profile with or without volumetric heat generation. Ullmann et al [3] minimized fin mass or volume for a specified heat-transfer. Kobus and Cavanaugh [4] developed a theoretical model to investigate the optimum fin shape using a minimum amount of material for a given amount of heat dissipation rate. Arab et al. [5] modeled two-dimensional heat-transfer in a single fin with a parabolic profile using the finite-volume and artificial neural network (ANN) methods. Jasinski [6] considered heat dissipation rate and pressure drop in a fully developed 3D flow in tubes with micro-fins on the wall. Shivdas Kharche et al. [7] reported the possible attempts can be made in cross section areas of the fin. P. Raghupati and Dr. Sivakumar [8] explained about thickness to length ratio to be taken for an ideal design for optimization of the heat transfer rate through the compressor body. Mohammad Mashud et al. [9] have discussed much more on the keeping cylindrical fin as the base fin. Fengming Wang, Jingzhou Zhang et al. [10] made an experiment setup for acquiring the maximum heat transfer characteristics in a rectangular fin. Mehendi Ehteshum et al. [11] explained the effects of perforation on the rectangular fin body. S M Wange et al. [12] focused on the notch creation which makes an attempt to increase heat transfer. He FaJiang et al. [13] explained about the physical setup and analysis done on the on various fin structures. Esmail M.A. Mokheimer [14] investigated the performance of annular fins of different profiles which are subjected to locally variable heat transfer coefficients. S. H. Barhatte et al [15] experimentally proved that increasing the area of heat transfer will definitely help in increase the heat transfer rate. Sikindar Baba.Md et al. [16] explained some techniques that help in the increasing the heat transfer rate by increasing the surface area. Naidu et al. [17] performed an empirical and numerical study of the natural convection problem from fin plates with different inclination angles. Fahiminia et al. [18] performed computational analysis using finite volume method to estimate natural convection heat from extended vertical surfaces. More et al [19] performed a synthesis study of free convection from a heating plate with different configurations and inclinations of the fin arrays. Hiresholi et al. [20] examined the natural thermal convection of the IC heat sink. Tiwari et al. [21] studied natural convection in layers on a sheathed flat plate to investigate the influence of certain parameters among others; ambient temperature, surface roughness, surface inclination and flow rate for convective heat transfer coefficient at different heat input streams. Shivdas Kharche et al. [22] reported that possible efforts could be made in the transverse region of the asterisk. P Raghupati et al [23] explained the thickness to length ratio for an ideal design to optimize the heat transfer rate through the compressor body. Mohammad Mashud et al. [24] further discussed maintaining the cylindrical fin as the base fin. A few minor changes to the cylindrical configuration will be responsible for increasing heat transfer through the compressor body. Fengming Wang et al. [25] performed an experimental setup to obtain maximum heat transfer characteristics in a rectangular fin. Mehendi Ehteshum et al. [26] explained the effect of perforation on rectangular fin bodies. SM Wange et al. [27] focused on grooving to increase heat transfer. He FaJiang et al. [28] explained the physical setup and the analysis performed on different fin structures. Esmail M.A. Mokheimer [29] investigated the performance of annular fins of different configurations subjected to locally varying heat transfer coefficients. S. H. Barhatte et al [30] demonstrated experimentally that increasing the heat transfer area inevitably increases the heat transfer rate. Sikindar Baba
MD et al. [31] explained several techniques that increase the rate of heat transfer by increasing the surface area. A various studies were reviewed which performs thermal performance to enhance the heat transfer by optimizing the design and material for similar devices of fins such as heat spreader devices [32] Patel Anand et al. for Cooling tower; [33, 34, 35, 36] Anand Patel et al. [37] Thakre, Shekhar et al. for heat exchanger; [38, 39, 40, 41, 42] Anand Patel et al. for hybrid combination system- solar heater and heat exchanger or solar heater and hybrid car; [43-51] Patel Anand et al. for solar air and water heater.

II. EXPERIMENTAL CONSTRUCTION

![Fig. 1: CAD Model of Experimental Set up]
(a) Split Fin
(b) Parallel Horizontal Fin Pattern

![Fig. 2: Parallel Horizontal Fin Pattern]
![Fig. 3: Split Fin Pattern]

![Fig.4: Actual Experimental Set Up of Parallel Split Fin Pattern]

In the present work two fins made of aluminum material with dimensions of 200 X 200 mm with 2 mm thick and fins are placed as shown in Fig. 2 and Fig. 3 for horizontal parallel fin and split fin respectively. The 200 W plate heaters is used for heating purpose and dimmer is used to regulate voltage and current to heater and five K type thermocouples are used for temperature measurement at various location of set up and one thermocouple is used measured air outlet temperature. 12 W 1 A DC fan is used to allow of flow on set up.

III. RESULT AND DISCUSSION

<table>
<thead>
<tr>
<th>Voltage V</th>
<th>Ammeter A</th>
<th>T1 °C</th>
<th>T2 °C</th>
<th>T3 °C</th>
<th>T4 °C</th>
<th>T5 °C</th>
<th>To °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel horizontal fin pattern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Calculation

Parallel horizontal fin pattern

At = N.Af + Ab

Cross section area of fin, $A_{cs} = 20 \times 0.3 = 6 \text{ cm}^2 = 0.0006 \text{ m}^2$

$Af = 5 \times [20 \times 4 \times 2 + 4 \times 0.2] = 804 \text{ cm}^2$

$Ab = 20 \times 20 - 6 \times 5 = 370 \text{ cm}^2$

At = 804 + 370 = 1.1174 m2

V-fin pattern

At = N.Af + Ab

Cross section area of fin, $A_{cs} = 2 \times [10 \times 0.2] = 6 \text{ cm}^2 = 0.0004 \text{ m}^2$

$Af = 5 \times [2 \times (10 \times 4 \times 2) + 4 \times 0.2] = 812 \text{ cm}^2$

$Ab = 20 \times 20 - 6 \times 5 = 370 \text{ cm}^2$

At = 804 + 370 = 1.1182 m2

Split fin pattern

At = N.Af + Ab

Cross section area of fin, $A_{cs} = 5 \times 0.3 = 1.5 \text{ cm}^2 = 0.00015 \text{ m}^2$

$Af = 15 \times 2 \times [5 \times 4 + 4 \times 0.2] = 624 \text{ cm}^2$

$Ab = 20 \times 20 - 1.5 \times 15 = 377.5 \text{ cm}^2$

At = 624 + 377.5 = 1097.5 cm$^2 = 0.10015 \text{ m}^2$

Table 2 Result Table

<table>
<thead>
<tr>
<th>T_{avg} °C</th>
<th>Q W</th>
<th>Area m2</th>
<th>h W/m2.°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel Horizontal Fin Pattern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.08</td>
<td>105.45</td>
<td>0.1174</td>
<td>102.30</td>
</tr>
<tr>
<td>42.74</td>
<td>120.19</td>
<td>0.1174</td>
<td>114.52</td>
</tr>
<tr>
<td>Split Fin Pattern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41.72</td>
<td>102.3</td>
<td>0.10015</td>
<td>225.99</td>
</tr>
<tr>
<td>41.92</td>
<td>122.4</td>
<td>0.10015</td>
<td>221.41</td>
</tr>
</tbody>
</table>

Table 1 and Table 2 represent observation table and result table respectively and from observation table it is observed that in case of both set up the surface temperatures at various locations are almost same and fin area is almost same in case of both set up but due to arrangement of split fin creates more turbulence in the flow which enhances the rate of heat transfer and so heat transfer coefficient value is high in case of split fin.

IV. CONCLUSION

The major outcome of this work is by modifying the fin arrangement better heat transfer results can be obtained.

REFERENCES:

10. Fengming Wang, Jingzhou Zhang, Suofang Wang, Investigation on flow and heat transfer characteristics in rectangular channel with drop-shaped pin fins, Elsevier 2012

25. Fengming Wang, Jingzhou Zhang, Suofang Wang, Investigation on flow and heat transfer characteristics in rectangular channel with drop-shaped pin fins, Elsevier 2012

