BANACH SPACE VALUED SEQUENCE SPACE

\[l_M(X, p, u) \]

INDU BALA

Department of Mathematics
Government College,
Chhachhrauli (Yamuna Nagar) 135 103, INDIA

Abstract- In this paper, we introduce the Banach space valued sequence space \(l_M(X, p, u) \) and examine various algebraic and topological properties of it. Finally we introduce a subspace of \(l_M(X, p, u) \) and investigate some topological properties of it. Our results generalize and unify the corresponding earlier results of Kamthan and Gupta [3], Ahmad and Bataineh [1].

2000 AMS Subject Classification: 40A05, 40C05, 46A45.

Keywords and Phrases: AK space, Banach space, Banach algebra, Orlicz function, Paranorm, Sequence space.

1. Introduction

Lindenstrauss and Tzafriri[6] used the idea of an Orlicz function \(M \) to construct the sequence space \(l_M \) of all sequences of scalars \((x_k) \) such that \(\sum_{k=1}^{\infty} M \left(\frac{|x_k|}{\rho} \right) < \infty \) for some \(\rho > 0 \). The space \(l_M \) equipped with the norm

\[\|x\| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M \left(\frac{|x_k|}{\rho} \right) \leq 1 \right\} \]

is a BK space [3, p. 300] usually called an Orlicz sequence space. The space \(l_M \) is closely related to the space \(l_p \), which is an Orlicz sequence space with \(M(x) = x^p, 1 \leq p < \infty \).

We recall [3, 6] that an Orlicz function \(M \) is a function from \([0, \infty)\) to \([0, \infty)\) which is continuous, non-decreasing and convex with \(M(0) = 0, M(x) > 0 \) for all \(x > 0 \) and \(M(x) \to \infty \) as \(x \to \infty \). Note that an Orlicz function is always unbounded.

An Orlicz function \(M \) is said to satisfy the \(\Delta_2 \)-condition for all values of \(u \) if there exists a constant \(K > 0 \) such that \(M(2u) \leq KM(u), \ u \geq 0 \). It is easy to see that always \(K > 2[4] \). A simple example of an Orlicz function which satisfies the \(\Delta_2 \)-condition for all values of \(u \) is given by \(M(u) = a|u|^\alpha (\alpha > 1) \), since \(M(2u) = a2^\alpha |u|^\alpha = 2^\alpha M(u) \). The Orlicz function \(M(u) = e^{\|u\|} - |u| - 1 \) does not satisfy the \(\Delta_2 \)-condition.

The \(\Delta_2 \)-condition is equivalent to the inequality \(M(lu) \leq K(l)M(u) \) which holds for all values of \(u \), where \(l \) can be any number greater than unity.

An Orlicz function \(M \) can always be represented in the following integral form

\[M(x) = \int_{0}^{x} p(t)dt \]

where \(p \) known as the kernel of \(M \), is right differentiable for \(t \geq 0, p(0) = 0, p(t) > 0 \) for \(t > 0, p \) is non-decreasing and \(p(t) \to \infty \) as \(t \to \infty \).

Before proceeding with the main results we recall [7; second edition] some terminology and notations.

A paranormed space \(X = (X, g) \) is a topological linear space in which the topology is given by a paranorm \(g \); a real subadditive function on \(X \) such that \(g(\theta) = 0, g(\xi) = g(-\xi) \) and such that the scalar multiplication is continuous. In the above, \(\theta \) is the zero in the complex linear space \(X \) and continuity of multiplication means that \(\lambda_n \to \lambda, x_n \to x \) (i.e., \(g(\lambda_n x_n - \lambda x) \to 0 \)) imply \(\lambda_n x_n \to \lambda x \) (i.e., \(g(\lambda_n x_n - \lambda x) \to 0 \)), for scalars \(\lambda \) and vectors \(x \).

A paranorm for which \(g(x) = 0 \) implies \(x = \theta \) is called total paranorm.

A Frechet space is a complete metric linear space, or equivalently a complete totally paranormed space.

Let \(w \) denote the space of all complex sequences \(x = (x_n) \). Let \(X \) be a linear subspace of \(w \) such that \(X \) is a Frechet space with continious coordinate projections. Then we say that \(X \) is an FK space, or a Frechet Koordinat space. If the metric of an FK space \(X \) is given by a complete norm then we say that \(X \) is a BK space, i.e. a Banach Koordinat space.
A sequence \((b_k)\) of elements of a paranormed space \((X, g)\) is called a Schauder basis for \(X\) if and only if, for each \(x \in X\), there exists a unique sequence \((\lambda_k)\) of scalars such that \(x = \sum_{k=1}^{\infty} \lambda_k b_k\), i.e., such that \(g(x - \sum_{k=1}^{n} \lambda_k b_k) \to 0 (n \to \infty)\).

An FK space \(X\) has AK, or has the AK property, if \((e_k)\), the sequence of unit vectors, is a Schauder basis for \(X\). In effect, this means that for each \(x = (x_k) \in X\) we have \((x_1, x_2, \ldots, x_n, 0, 0, \ldots) = \sum_{k=1}^{n} x_k e_k \to x (n \to \infty)\), where the convergence is in the metric of \(X\).

Let \((X, \|\cdot\|)\) be a Banach space over the complex field \(\mathbb{C}\). Denote by \(w(X)\) the space of all \(X\)-valued sequences. Let \(M\) be an Orlicz function, \(u = (u_k)\) be an arbitrary sequence of scalars such that \(u_k \neq 0 (k = 1, 2, \ldots)\) and \(p = (p_k)\) be a bounded sequence of positive real numbers.

We now introduce the Banach space valued sequence space \(l_M(X, p, u)\) using an Orlicz function \(M\) as follows:

\[l_M(X, p, u) = \{x \in w(X) : \sum_{k=1}^{\infty} \left(M\left(\frac{|u_k x_k|^p}{\rho} \right) \right)^{\frac{1}{p}} < \infty \text{ for some } \rho > 0 \} \]

Some well-known spaces are obtained by specializing \(X, M, p\) and \(u\).

(i) If \(X = \mathbb{C}, p_k = u_k = 1\) for all \(k\), then \(l_M(X, p, u) = l_M\) (Lindenstrauss and Tzafriri [6]).

(ii) If \(X = \mathbb{C}, u_k = 1\) for all \(k\), then \(l_M(X, p, u) = l_M(p)\) (Parashar and Choudhary [8]).

(iii) If \(X = \mathbb{C}\), then \(l_M(X, p, u) = l_M(p, u)\) (Ahmad and Bataineh [1]).

(iv) If \(M(x) = x, u_k = 1\) for all \(k\) and \(p_k = p(1 \leq p < \infty)\) for all \(k\), then \(l_M(X, p, u) = l_p(X)\) (Leonard [5]).

We denote \(l_M(X, p, u)\) as \(l_M(X, p)\) when \(u_k = 1\) for all \(k\).

In §2, we propose to study various algebraic and topological properties of the sequence space \(l_M(X, p, u)\). In §3, certain inclusion relations between \(l_M(X, p, u)\) space have been established. In §4, some information on multipliers for \(l_M(X, p, u)\) is given. In §5, a subspace of \(l_M(X, p, u)\) has been introduced and some topological properties of it has been discussed.

The following inequalities (see, e.g., [7; first edition, p. 190]) are needed throughout the paper.

Let \(p = (p_k)\) be a bounded sequence of positive real numbers. If \(H = \sup_k p_k\), then for any complex \(a_k\) and \(b_k\),

\[(1.1) \quad |a_k + b_k|^{p_k} \leq C (|a_k|^{p_k} + |b_k|^{p_k}),\]

where \(C = \max(1, 2^H - 1)\). Also for any complex \(\lambda\),

\[(1.2) \quad |\lambda|^{p_k} \leq \max(1, |\lambda|^H)\).

2. Linear topological structure of \(l_M(X, p, u)\) spaces

Theorem 2.1. For any Orlicz function \(M\), \(l_M(X, p, u)\) is a linear space over the complex field \(\mathbb{C}\). The proof is a routine verification by using standard techniques and hence is omitted.

Theorem 2.2. \(l_M(X, p, u)\) is a topological linear space, paranormed by

\[(2.1) \quad g(x) = \inf \left\{ \rho^{p/n} G \left(\sum_{k=1}^{\infty} \left[M\left(\frac{|u_k x_k|}{\rho} \right) \right]^{\frac{1}{p}} \right)^{\frac{1}{n}} \leq 1 \right\}\]

where \(G = \max(1, \sup_k p_k)\).

The proof uses ideas similar to those used (e.g.) in [8, p. 421] and the fact that every paranormed space is a topological linear space [9, p. 37].

Theorem 2.3. Let \(1 \leq p_k < \infty\), then \(l_M(X, p, u)\) is a Frechet space paranormed by (2.1).

Proof. Let \((x^i)\) be a Cauchy sequence in \(l_M(X, p, u)\). Let \(r, u_0\) and \(x_0\) be fixed. Then for each \(\frac{\epsilon}{ru_0x_0} > 0\) there exists a positive integer \(N\) such that

\[g(x^i - x^j) < \frac{\epsilon}{ru_0x_0}, \text{ for all } i, j \geq N. \]

Using definition of paranorm, we get
\[
\left(\sum_{k=1}^\infty M \left(\frac{\|u_k^j x_k^i - u_k^j x_i^i\|}{g(x^i - x^j)} \right) \right)^{\frac{1}{p_k}} \leq 1, \text{ for all } i, j \geq N.
\]

Thus
\[
\sum_{k=1}^\infty M \left(\frac{\|u_k^j x_k^i - u_k^j x_i^i\|}{g(x^i - x^j)} \right)^{p_k} \leq 1, \text{ for all } i, j \geq N.
\]

Since \(1 \leq p_k < \infty\), it follows that
\[
M \left(\frac{\|u_k^j x_k^i - u_k^j x_i^i\|}{g(x^i - x^j)} \right) \leq 1,
\]
for each \(k \geq 1\) and for all \(i, j \geq N\). Hence one can find \(r > 0\) with \(\|u_0 x_0\| / 2 \geq 1\), where \(p\) is the kernel associated with \(M\), such that
\[
M \left(\frac{\|u_k^j x_k^i - u_k^j x_i^i\|}{g(x^i - x^j)} \right) \leq \frac{\|u_0 x_0\|}{2} r p \frac{\|u_0 x_0\|}{2}.
\]

Using the integral representation of Orlicz function \(M\), we get
\[
\|u_k^j x_k^i - u_k^j x_i^i\| \leq \frac{r \|u_0 x_0\|}{2} g(x^i - x^j)
\]
\(< \frac{\epsilon}{2}\), for all \(i, j \geq N\).

Hence \((u^j x^j)\) is a Cauchy sequence in \(X\) which implies that \((x^j)\) is Cauchy in \(X\) since \(u\) is an arbitrary fixed sequence of parameters such that \(u_k \neq 0\) for each \(k\). Therefore, for each \(\epsilon(0 < \epsilon < 1)\), there exists a positive integer \(N\) such that
\[
\|x^i - x^j\| < \epsilon\] for all \(i, j \geq N\).

Now, using continuity of \(M\), we find that
\[
\left(\sum_{k=1}^N M \left(\frac{\|u_k^j (x_k^i - \lim_{j \to \infty} x_k^i)\|}{\rho} \right) \right)^{\frac{1}{p_k}} \leq 1, \text{ for all } i \geq N.
\]

Thus
\[
\left(\sum_{k=1}^N M \left(\frac{\|u_k^j (x_k^i - x_k^i)\|}{\rho} \right) \right)^{\frac{1}{p_k}} \leq 1, \text{ for all } i \geq N.
\]

Since \(N\) is arbitrary, by taking infimum of such \(\rho\)'s we get
\[
\inf \left\{ \rho^{p_n} : \left(\sum_{k=1}^\infty M \left(\frac{\|u_k^j (x_k^i - x_k^i)\|}{\rho} \right) \right)^{\frac{1}{p_k}} \leq 1 \right\} \text{ for all } i \geq N.
\]

Hence \(g(x^i - x) < \epsilon\) for all \(i \geq N\). That is to say that \((x^i)\) converges to \(x\) in the paranorm of \(l_M(X, p, u)\). Since \((x^i) \in l_M(X, p, u)\) and \(M\) is continuous, it follows that \(x \in l_M(X, p, u)\).

Corollary 2.4. If \(p\) is a constant sequence, then \(l_M(X, p, u)\) is a Banach space for \(p \geq 1\) and a complete \(p\)-normed space for \(p < 1\).

Definition 2.5[2] A linear subspace \(Y\) of \(w(X)\) is a generalized FK space (resp. a generalized BK space) if \(Y\) is a Fre’chet space (resp. a Banach space) with continuous coordinate projections.

In case \(X = \mathbb{C}\), then \(Y\) becomes an FK space (resp. a BK space).

Theorem 2.6. Let \(1 \leq p_k < \infty\), then \(l_M(X, p)\) is a generalized FK space paranormed by \((2.1)\).

Proof. In view of Theorem 2.3, it is sufficient to show that the coordinate functionals \(P_i; l_M(X, p) \to X\), where \(P_i(x) = x_i\) are continuous.

For \(\epsilon > 0\) let \(\delta > 0\) be such that \(0 < \delta < 1\) and \(\delta \leq M(\epsilon)\). Let \(g(x) < \delta\) so that \(\sum_{k=1}^\infty M \left(\frac{\|x_k\|}{g(x)} \right)^{p_k} \leq 1\)

This implies that \(\sum_{k=1}^\infty M \left(\frac{\|x_k\|}{\delta} \right)^{p_k} \leq 1\)

and so \(M \left(\frac{\|x_k\|}{\delta} \right)^{p_k} \leq 1\) for each \(k \geq 1\).
As \(1 \leq p_k < \infty \), so \(M \left(\frac{\|x_k\|}{\delta} \right) \leq 1 \) for each \(k \geq 1 \).

Since \(0 < \delta < 1 \) and \(M \) is convex \(\frac{1}{\delta} M(\|x_k\|) \leq M \left(\frac{\|x_k\|}{\delta} \right) \leq 1 \) which implies that \(M(\|x_k\|) \leq \delta \leq M(\epsilon) \).

Since \(M \) is non-decreasing, we have \(\|x_k\| < \epsilon \) for each \(k \geq 1 \) and hence \(\|x_k\| < \epsilon \) for each \(k \). Thus the coordinate functionals are continuous and this completes the proof of the theorem.

Corollary 2.7. If \(p \) is a constant sequence and \(p \geq 1 \), then \(l_M(X, p) \) is a generalized BK space.

3. Inclusion between \(l_M(X, p, u) \) spaces

We now investigate some inclusion relations between \(l_M(X, p, u) \) spaces.

Theorem 3.1. If \(p = (p_k) \) and \(q = (q_k) \) are bounded sequences of positive real numbers with \(0 < p_k \leq q_k < \infty \) for each \(k \), then for any Orlicz function \(M \), \(l_M(X, p, u) \subseteq l_M(X, q, u) \).

Proof. Let \(x \in l_M(X, p, u) \). Then there exists some \(\rho > 0 \) such that \(\sum_{k=1}^{\infty} \left[M \left(\frac{\|u_k x_k\|}{\rho} \right) \right]^p_k < \infty \). This implies that \(M \left(\frac{\|u_k x_k\|}{\rho} \right) \leq 1 \) for sufficiently large values of \(k \), say \(k \geq n_0 \) for some fixed \(n_0 \in N \). Since \(M \) is non-decreasing and \(p_k \leq q_k \), we have

\[
\sum_{k=n_0}^{\infty} \left[M \left(\frac{\|u_k x_k\|}{\rho} \right) \right]^q_k \leq \sum_{k=n_0}^{\infty} \left[M \left(\frac{\|u_k x_k\|}{\rho} \right) \right]^p_k < \infty.
\]

This shows that \(x \in l_M(X, q, u) \) and completes the proof.

Theorem 3.2. If \(r = (r_k) \) and \(t = (t_k) \) are bounded sequences of positive real numbers with \(0 < r_k, t_k < \infty \) and if \(p_k = \min(r_k, t_k) \), \(q_k = \max(r_k, t_k) \), then for any Orlicz function \(M \), \(l_M(X, p, u) \cap l_M(X, t, u) \) and \(l_M(X, q, u) = G \), where \(G \) is the subspace of \(w \) generated by \(l_M(X, r, u) \cap l_M(X, t, u) \).

Proof. It follows from Theorem 3.1 that \(l_M(X, r, u) \subseteq l_M(X, t, u) \cap l_M(X, t, u) \) and \(G \subseteq l_M(X, q, u) \).

For any complex \(\lambda \), \(|\lambda|^p \leq \max(|\lambda|^r, |\lambda|^s) \), thus \(l_M(X, r, u) \cap l_M(X, t, u) \subseteq l_M(X, p, u) \).

Let \(A = \{k: r_k \geq t_k\} \) and \(B = \{k: r_k < t_k\} \).

If \(x = (x_k) \in l_M(X, q, u) \), we write

\[
y_k = x_k(k \in A) \quad \text{and} \quad y_k = 0(k \in B); \quad \text{and} \quad z_k = x_k(k \in B).
\]

Then since \(x = (x_k) \in l_M(X, q, u) \), there exists some \(\rho > 0 \) such that \(\sum_{k=1}^{\infty} \left[M \left(\frac{\|u_k x_k\|}{\rho} \right) \right]^q_k < \infty \).

Now,

\[
\sum_{k=1}^{\infty} \left[M \left(\frac{\|u_k x_k\|}{\rho} \right) \right]^r_k = \sum_{k \in A} + \sum_{k \in B} = \sum_{k \in A} \left[M \left(\frac{\|u_k x_k\|}{\rho} \right) \right]^q_k < \infty.
\]

and so \(y \in l_M(X, r, u) \subseteq G \).

Similarly, \(z \in l_M(X, t, u) \subseteq G \).

Thus, \(x = y + z \in G \). We have proved that \(l_M(X, q, u) \subseteq G \), which gives the required result.

Corollary 3.3. The three conditions \(l_M(X, r, u) \subseteq l_M(X, t, u) \), \(l_M(X, p, u) = l_M(X, r, u) \) and \(l_M(X, t, u) = l_M(X, q, u) \) are equivalent.

Corollary 3.4. \(l_M(X, r, u) = l_M(X, t, u) \) if and only if \(l_M(X, p, u) = l_M(X, q, u) \).

4. The Space of Multipliers of \(l_M(X, p, u) \)

For any set \(E \subseteq w(X) \) the space of multipliers of \(E \), denoted by \(S(E) \), is given by \(S(E) = \{a = (a_k) \in w(X): ax = (a_k x_k) \in E \text{ for all } x = (x_k) \in E\} \).

Theorem 4.1. For Orlicz function \(M \) which satisfies the \(\Delta_2 \)-condition and Banach algebra \(X \), we have \(l_M(X) \subseteq S[l_M(X, p, u)] \)

where \(l_M(X) = \{a = (a_k) \in w(X): \sup_k \|a_k\| < \infty\} \).

Proof. Let \(a = (a_k) \in l_M(X) \), \(T = \sup_k \|a_k\| \) and \(x = (x_k) \in l_M(X, p, u) \). Then \(\sum_{k=1}^{\infty} \left[M \left(\frac{\|u_k x_k\|}{\rho} \right) \right]^p_k < \infty \) for some \(\rho > 0 \). Since \(M \) satisfies the \(\Delta_2 \)-condition, there exists a constant \(K > 1 \) such that
\[
\sum_{k=1}^{\infty} \left[M \left(\frac{\| u_k \|_{L_k} }{\rho} \right) \right]^{p_k} \leq \sum_{k=1}^{\infty} \left[M \left(\frac{\| a_k \|_{U_k} }{\rho} \right) \right]^{p_k} \\
\leq \sum_{k=1}^{\infty} \left[M \left((1 + |T|) \frac{\| u_k \|_{L_k} }{\rho} \right) \right]^{p_k} \\
\leq (K(1 + |T|))^{\frac{1}{p}} \sum_{k=1}^{\infty} \left[M \left(\frac{\| u_k \|_{L_k} }{\rho} \right) \right]^{p_k} < \infty,
\]

where \([T]\) denotes the integer part of \(T\). Hence \(a \in S[l_{m}(X, p, u)]\).

5. A subspace of \(l_{m}(X, p, u)\)

In this section we introduce a subspace of \(l_{m}(X, p, u)\) and investigate some topological properties of it.

We define \(h_{m}(X, p, u)\) by

\[
h_{m}(X, p, u) = \left\{ x = (x_k) \in w(X) : \sum_{k=1}^{\infty} \left[M \left(\frac{\| u_k \|_{L_k} }{\rho} \right) \right]^{p_k} < \infty \text{ for every } \rho > 0 \right\}.
\]

The space \(h_{m}(X, p, u)\) is clearly a subspace of \(l_{m}(X, p, u)\), and the topology is determined by the paranorm of \(l_{m}(X, p, u)\) given by (2.1).

Theorem 5.1. Let \(1 \leq p_k < \infty\). Then \(h_{m}(X, p, u)\) is a Frechet space with the paranorm given by (2.1).

Proof. Since \(h_{m}(X, p, u)\) is a subspace of \(l_{m}(X, p, u)\) which is a Frechet space under the paranorm given by (2.1), it is sufficient to show that \(h_{m}(X, p, u)\) is closed in \(l_{m}(X, p, u)\). Therefore, let \((x^i) = (x_k^i)\) be a sequence in \(h_{m}(X, p, u)\) such that \(g(x^i - x) \to 0\) as \(i \to \infty\), where \(x = (x_k) \in l_{m}(X, p, u)\).

To complete the proof we need to show that \(\sum_{k=1}^{\infty} \left[M \left(\frac{\| u_k \|_{L_k} }{\xi} \right) \right]^{p_k} < \infty\) for every \(\xi > 0\). To \(\xi > 0\) there corresponds an integer \(m\) such that \(g((x^m - x) < \xi/2)\), and so by the convexity of \(M,\)

\[
\sum_{k=1}^{\infty} \left[M \left(\frac{\| u_k \|_{L_k} }{\xi} \right) \right]^{p_k} \leq \sum_{k=1}^{\infty} \left[\frac{1}{2} M \left(\frac{\| u_k \|_{L_k} }{\xi/2} \right) + \frac{1}{2} M \left(\frac{\| u_k \|_{L_k} }{\xi/2} \right) \right]^{p_k} \\
\leq C \sum_{k=1}^{\infty} \left[M \left(\frac{\| u_k \|_{L_k} }{\xi/2} \right) \right]^{p_k} < \infty,
\]

where \(C = \max(1, 2^{m-1})\). Thus \(x \in h_{m}(X, p, u)\) which shows that \(h_{m}(X, p, u)\) is complete.

Corollary 5.2. Let \(1 \leq p_k < \infty\), then \(h_{m}(X, p, u)\) is a generalized FK space with the paranorm given by (2.1).

The proof follows in view of Theorem 2.6 and Theorem 5.1.

REFERENCES: