
ISSN: 2455-2631 July 2023 IJSDR | Volume 8 Issue 7

IJSDR2307101 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 693

Exploring the Tiny Encryption Algorithm: A

Comparative Analysis of Parallel and Sequential

Computation

Mansour Al-Hlalat

Lecturer

Department of Computer Science

University of Jordan, Amman, Jordan

Abstract- The Tiny Encryption Algorithm (TEA) is renowned for its strong security and impressive speed, making it highly

suitable for lightweight encryption needs in diverse applications. This research paper delves into the investigation of TEA's

efficiency by examining the influence of various execution parameters. The study specifically focuses on exploring the impact

of factors such as data size, processing type, and the number of processing units in the execution machine on TEA's

performance. Through this analysis, valuable insights can be gained to optimize TEA's usage and enhance its overall

effectiveness. In addition, this paper introduces a robust model designed to efficiently execute the TEA on parallel machines

with large-scale data. The proposed model utilizes a master processor for data splitting and gathering, along with multiple

slave processors for executing distributed data. To assess the performance of the TEA algorithm, several experiments were

conducted, evaluating factors such as efficiency, execution time, and speedup. These experiments involved varying numbers

of plaintexts and key sizes, conducted on both serial and parallel machines, including different cores systems. The TEA

algorithm was implemented in C/C++ language using the Message Passing Interface (MPI) library and tested on the high-

performance IMAN1 super-computer. The study reveals the significant value of parallel systems in enhancing the overall

efficiency of TEA (Tiny Encryption Algorithm), thereby playing a crucial role in the development of secure embedded

systems within a short timeframe. The findings demonstrate that parallel processing significantly boosts the computational

power of encryption algorithms by distributing computational tasks across multiple processors or cores. Remarkably, the

study achieves a substantial decrease in execution time, with a record of 13.258 seconds for a 512k plaintext and 512 key

size on a 128-CPU machine. Additionally, the study showcases impressive speed-up across various approaches, highlighting

the impactful achievements that fuel further research in this field.

Index Terms- Tiny Encryption Algorithm, Parallel Machines, Encryption, Computation, Fast Software Encryption.

I. INTRODUCTION

Encryption is a widely used technique for transforming data from its original form, known as plaintext, into an unintelligible form

called Ciphertext. This process ensures that only authorized individuals with the appropriate decryption policies and techniques can

access the original data [1]. The performance of encryption is influenced by various factors, including the size of the data, the key

size, the type of processing (serial or parallel), and the number of execution units employed. The Tiny Encryption Algorithm (TEA)

is recognized as a simple yet highly efficient encryption algorithm. It encompasses three versions: TEA, XTEA, and XXTEA. TEA

employs two 32-bit blocks and a 128-bit key, while XTEA utilizes a 64-bit block and the same 128-bit key [1, 2]. XXTEA, on the

other hand, employs variable-length blocks that are multiples of 32 bits in size. This research focuses on studying the XXTEA

algorithm, specifically by implementing both parallel and serial versions using a C++ program with standard and MPI libraries. The

aim is to assess the impact of data size, key size, number of processors, and processing type on the algorithm's performance. To

achieve this, general execution metrics such as speedup and execution time are calculated. The serial implementation is conducted

on a general-purpose computer, while the parallel implementation is performed on the IMAN1 Supercomputer in Jordan. This paper

follows a structured organization to present its findings and analysis. In Section II, the background of encryption is discussed, along

with an overview of related works focusing on TEA. Section III introduces the proposed model, presenting both the sequential and

parallel approaches. The evaluation results of these approaches are presented in Section IV. Finally, the paper concludes with a

summary and concluding remarks in Section VI. This organization allows for a comprehensive understanding of the research and its

contributions in the field of encryption.

II. BACKGROUND AND RELATED WORK

This section presents a background of the TEA, along with a definition of the IMAN1 Supercomputer. Additionally, an overview

of related research is presented, with a specific focus on TEA.

The Tiny Encryption Algorithm (TEA)

The Tiny Encryption Algorithm (TEA) is a symmetric key block cipher that operates on 64-bit blocks of data. It was designed to

provide a simple yet effective encryption solution. TEA follows a Feistel network structure and uses a fixed-size 128-bit key, typically

represented as two 64-bit values. The algorithm performs a series of iterations, typically 32 rounds, on the input block, applying a set

of mathematical operations involving key addition, bit shifting, and XOR operations [1, 2]. TEA is known for its compactness and

efficiency, as it requires minimal computational resources and has a small code footprint. Despite its simplicity, TEA has shown to

http://www.ijsdr.org/

ISSN: 2455-2631 July 2023 IJSDR | Volume 8 Issue 7

IJSDR2307101 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 694

offer a reasonable level of security for various applications that require lightweight encryption [1, 3]. Table 1 presents the primary

steps of the algorithm.

Table 1 The primary steps of the TEA algorithm

key: array represents the key portions used in each round.

+: represents bitwise addition.

XOR: operator XOR represents bitwise XOR operation.

shift operators (<< and >>): represent left and right bit shifts, respectively.

Procedure:

Key Setup:

 Input: 128-bit key (represented as two 64-bit values)

Block Encryption:

 Input: 64-bit block

 Divide the block into two 32-bit halves: left and right

Round Iterations:

 Input: Number of rounds (usually 32)

 for i = 1 to rounds do:

 left = left + ((right << 4) + key[0]) XOR (right + key[1]) XOR ((right >> 5) + key[2])

 right = right + ((left << 4) + key[3]) XOR (left + key[4]) XOR ((left >> 5) + key[5])

Block Output:

 Output: Encrypted block (final values of left and right halves)

Block Decryption:

 Input: Encrypted block (final values of left and right halves)

 for i = rounds down to 1 do:

 right = right - ((left << 4) + key[3]) XOR (left + key[4]) XOR ((left >> 5) + key[5])

 left = left - ((right << 4) + key[0]) XOR (right + key[1]) XOR ((right >> 5) + key[2])

Eman1 Super-Computer

In 2014, the Eman1 super-computer was launched as the fastest computer in Jordan, with the aim of being the fastest computer

in the entire Middle East while keeping costs low. This impressive computer utilized approximately 2260 devices, enabling it to

perform an astonishing 25 trillion ultra-fast calculations [4]. As a result, it is recognized as one of the most efficient processing units

globally. The primary purpose of this system is to support scientific research across various digital fields. Notable projects include

the design and simulation of the core for the Jordanian research nuclear reactor, the development of a model to study synchrotron

light beam dynamics, parallel processor projects in operating systems and cyber security, innovation projects in medicines and

medical tissue analysis, image analysis projects, and systems in the field of medical images, as well as sustainable energy projects.

Related Works

Encryption algorithms have garnered significant interest among researchers due to their importance in securing sensitive data.

This section focuses on exploring and highlighting notable discoveries in the XXTEA Algorithm.

Wheeler and Needham (1995) [1] The proposed approach introduces a concise program that is compatible with various

programming languages and can be executed on a wide range of machines. It employs a compact routine based on the Feistel iteration,

utilizing a substantial number of rounds to achieve a balance between security and simplicity. The design emphasizes safety through

the extensive cycling of the encoding process and the length of the key. Furthermore, the implementation optimizes computational

power by employing word-level operations instead of less efficient byte or 4-bit operations. Hunn et al. (2012) [2] the authors

introduce a cryptographic algorithm tailored to improve efficiency and minimize storage demands, making it well-suited for resource-

limited systems such as embedded systems. The proposed model achieves a harmonious blend of security and simplicity by leveraging

mixed algebraic group operations and a substantial number of rounds for both encryption and decryption. The encryption process

incorporates 2,883 gates and exhibits a delay time of 16.72ns across sixty-four Feistel rounds, while the decryption process utilizes

2,805 gates with a delay time of 14.78ns. In a study by Yarrkov (2010) [3], XXTEA, also referred to as Corrected Block TEA, is

introduced as a member of the TEA series of algorithms. The XXTEA algorithm, although simple in nature, was subjected to a

plaintext attack using approximately 259 queries and minimal computational effort. The findings of the study revealed that XXTEA

did not achieve the intended level of 128-bit security as originally envisioned.

Many research papers tackle the diverse challenges involved in the implementation of encryption algorithms, with a specific focus

on addressing issues such as execution time. Moreover, the exploration of parallel computation utilizing multi-core processors is

extensively discussed as a promising approach to improve the overall performance of encryption algorithms. Hunn et al. (2012) [5]

The author suggests that TEA fulfills all the criteria for an effective GPU Pseudo Random Number Generator (PRNG). It has shown

promising results compared to existing approaches. The evaluation of TEA using standard randomness test suites, Perlin noise, and

http://www.ijsdr.org/

ISSN: 2455-2631 July 2023 IJSDR | Volume 8 Issue 7

IJSDR2307101 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 695

a Monte-Carlo shadow algorithm confirms its ability to generate high-quality noise. Additionally, TEA outperforms MD5 in terms

of speed while maintaining equivalent levels of randomness. The empirical findings of this study support the use of TEA, specifically

with 8 rounds, as a faster alternative to MD5 for generating high-quality random numbers.

Tallapally and Manjula (2020) [6] The authors conducted an evaluation of various block cipher techniques, including Electronic

Codebook (ECB), Cipher Block Chaining (CBC), Cipher Feedback (CFB), Output Feedback (OFB), and Counter (CTR), using the

Java platform. The study revealed that the Counter mode exhibited the best performance among the evaluated techniques. Elkabbany

et al. (2015) [7] proposed model that introduces a high-performance security algorithm using the AES algorithm with parallel and

pipelining approaches. The model effectively implements pipelining for all rounds and parallelizes the Add_Round_Key and

Mix_Column transformations. Experimental results demonstrate significant performance improvements, with a 95% enhancement in

the pipeline approach and a remarkable 98% improvement in the parallelizing approach. This model showcases the potential for

efficient hardware and software implementations of the AES algorithm for enhanced security. Celikel et al. (2006) [8] Authors design

and execute DES encryption in the ECB mode using parallelization schemes, namely pipeline, block, and plain-text. Among these

schemes, parallelization based on plain-text demonstrated the most favorable results. Additionally, the authors observed that the

speed of DES was not dependent on the source language used.

Esmaeel (2012) [9] Author presents a comprehensive overview of how a block cipher can be constructed, encompassing an

examination of its historical context, the inventors involved, and the algorithms employed, with a particular focus on the TEA block

ciphers. Furthermore, it discusses the programming approach taken, emphasizing aspects such as modularity, simplicity, and resource

allocation. Rajesh et al. (2019) [10] authors propose a novel tiny symmetric encryption algorithm (NTSA) aimed at enhancing security

for the transfer of text files through IoT networks. The algorithm introduces dynamic key confusions for each round of encryption,

thereby bolstering the overall security of the system. In order to validate the effectiveness of NTSA in an IoT network, extensive

experiments were conducted, which encompassed analyzing the avalanche effect, as well as measuring the encryption and decryption

time. The experiments were conducted on various embedded devices commonly found in IoT networks.

III. METHODOLOGY

This section describes the architecture of the proposed model for sequential and parallel approaches.

Sequential Approach (SA)

The proposed Sequential Approach (SA) of the TEA algorithm presented using NetBeans as the development environment,

C/C++ Compiler, Windows 10 operating system, Core(TM) i7 Duo-3.4GHz processor, and 8 GB RAM. The process of this approach

is implemented in Table 2.

Table 2 The processes of the SA approach for the TEA algorithm

Algorithm: Process_Sequential _implementation ()

1. Read the list of data files. (sizes: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 k-bytes).

2. For each DataFile in the list of data files:

For each KeySize in [512, 256, 128, 64, 32, 16]:

Apply the XXTEA function to the data in DataFile using the current KeySize.

Add the result to DataFileResults.

Add DataFileResults to Results.

3. Return the Results.

Parallel Approach (PA)

The proposed Parallel Approach (PA) for (TEA) presented using multicore architectures using IMAN1 Supercomputer. The

implementation is done in C++ with the MPI library to enable parallel encryption and decryption. Fig. 1 provides an overview of the

approach's structure. Further the algorithm for this methodology is presented in Table 3.

Table 3 The processes of the PA approach for the TEA algorithm

Algorithm: Process_Parallel_implementation ()

1. Read the list of data files. (sizes: 1, 2 KB, 4 KB, 8 KB, 16 KB, 32 KB, 64 KB, 128 KB, 256 KB, 512 KB, 1 MB, 2

MB).

2. Determine the number of processors (n).

3. If n is greater than 3:

Assign one of the processors as the master processor.

Assign the remaining processors as slaves (workers).

Split each file among the slave processors based on the formula: file size / (n-1).

Assign each piece of data to the corresponding slave processor.

4. If n is not greater than 3:

Assign one of the processors as the master processor and slave.

http://www.ijsdr.org/

ISSN: 2455-2631 July 2023 IJSDR | Volume 8 Issue 7

IJSDR2307101 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 696

Assign the remaining processors as slaves (workers).

Split each file among the slave processors based on the formula: file size / n.

Assign each piece of data to the corresponding slave processor.

5. Execute the XXTEA function for each data in its respective slave processor for all key sizes: 512, 64, and 16 bytes.

6. After all slave processors have finished, the master processor gathers all the data.

7. Save and return the collected data.

Figure 1 The architecture of the PA approach for the TEA algorithm

In the architecture of the PA approach, the first step is to read the data from the data holder1, which contains the input files. To

distribute the workload efficiently, one of the processors is assigned as the master processor, while the remaining processors are

designated as slaves or workers. The input files are then split among the slave processors, with each piece of data assigned to the

corresponding slave processor for further processing. In each slave processor, the XXTEA function is executed on the assigned data.

Once all the slave processors have completed their computations, the master processor gathers all the processed data from the slaves.

Finally, the collected data is saved to the data holder2, ensuring that the results are stored for further analysis or use in subsequent

stages of the system. This distributed processing approach allows for efficient and parallel execution of the XXTEA function,

improving overall performance and scalability.

In summary, the utilization of a distributed processing approach with a master-slave architecture for executing the XXTEA

function brings notable advantages to the overall system. It enables efficient parallelization, significantly improving performance by

reducing processing time. Additionally, the system's scalability is enhanced, ensuring the ability to handle larger datasets with ease.

This approach demonstrates the effectiveness of distributed computing in optimizing the security and efficiency of data transfer in

IoT networks.

http://www.ijsdr.org/

ISSN: 2455-2631 July 2023 IJSDR | Volume 8 Issue 7

IJSDR2307101 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 697

Evaluation Metrics

The performance evaluation of the proposal methodology encompasses various metrics includes Execution time (T),

Speedup (S), Performance (P), Throughput (Th), and Scalability (Sca) [11].

Execution time is the duration of time needed for a task to complete its execution. It determined by the difference between its start

time and end time. Equation 1 shows how to calculate the T.

T = Te – Ts (1)

The speedup of a parallel algorithm over a corresponding sequential algorithm is the ratio of the compute time for the

sequential algorithm to the time for the parallel algorithm. Equation 2 shows how to calculate the S.

S = Ts/Tp (2)

Where, Ts is the compute time for the sequential algorithm, Tp is the compute time for the parallel algorithm.

Performance is a characteristic that quantifies the efficiency of an algorithm in terms of its execution time. It is commonly

understood that as performance increases, the execution time decreases. Equation 3 shows how to calculate the P.

P = 1/T (3)

Throughput refers to the quantity or volume of work (W) completed within a specified time period (T). It represents the

overall efficiency or productivity achieved during a particular duration. Equation 4 shows how to calculate the Th.

Th = W/T (4)

Scalability is a characteristic that measures the performance improvement of an algorithm when executed on varying numbers

of cores or processors.

IV. RESULTS AND DISCUSSIONS

In this section, the performance evaluation of each proposed approach is presented. The effectiveness of both approaches

is analyzed under different execution strategies, considering various plain texts, key sizes, and different numbers of processors.

The implementation of these approaches utilizes the C/C++ programming language, along with the MPI library, and additional

libraries such as stdio.h, ctype.h, string.h, and math.h.

SA Results

The execution times in seconds for different plaintext sizes in bytes, along with their respective key sizes, are presented

in Table 4. Based on the results obtained, the following observations have been identified:

▪ When the size of the plaintext increases while keeping the key size fixed, there is a significant increase in the execution

time. This observation can be attributed to the larger amount of data being processed sequentially, which requires more

execution time. This suggests that employing a multi-processor system becomes essential for the TEA algorithm when

dealing with substantial data volumes in encryption and decryption operations.

▪ When the size of the plaintext is fixed and the key size remains unchanged, the execution time increases. This observation

is due to the fact that TEA operations are influenced by the input data size rather than the key size. Therefore, it is possible

to encrypt data using a larger key (for increased security) at a minimal increase in execution time.

These observations highlight the trade-offs between plaintext size, key size, and execution time in the TEA algorithm,

emphasizing the need for considering system capabilities and security requirements when employing TEA for data encryption.

Table 4 The proposed SA approach results in different plaintext sizes, along with their respective key sizes

Key size in byte

 512 256 128 64 32 16

8.971 6.515 2.562 0.825 0.756 0.635 1K

P
la

in
 t

ex
t

si
ze

11.101 8.145 2.958 1.758 0.978 0.879 2K

14.801 10.145 4.961 2.243 1.780 1.060 4K

23.314 14.615 5.948 3.991 3.622 1.320 8K

23.297 19.162 10.454 6.092 5.744 1.919 16K

33.383 30.145 15.501 9.698 6.319 2.187 32K

43.306 39.144 19.049 13.953 7.509 3.772 64K

53.488 45.155 21.338 14.420 8.062 5.241 128K

http://www.ijsdr.org/

ISSN: 2455-2631 July 2023 IJSDR | Volume 8 Issue 7

IJSDR2307101 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 698

59.333 50.152 26.111 19.266 13.312 9.349 256K

63.056 59.156 30.415 24.450 17.961 10.145 512K

61.320 60.545 39.761 31.079 24.589 15.622 1M

73.404 65.125 49.747 38.070 28.225 19.780 2M

74.261 72.956 51.338 47.433 36.989 22.241 4M

PA Results

In first experiment for the PA, different plaintext sizes in bytes with 16-byte key size, along with multiple processors are

applied in the PA, the of this experiment presented in Table 5. Based on the obtained results, the following observations have

been identified:

▪ When executing the same plaintext with different numbers of processors, a significant decrease in execution time is

observed until a certain threshold for the number of processors. Beyond this threshold, the execution time suddenly

increases. This observation is attributed to the lack of significant parallelism in TEA for a large number of processors.

Additionally, the overhead of parallelization outweighs the benefits gained in this scenario.

▪ When executing a large plaintext, parallelism performs better compared to executing a small plaintext. This is because

the dependencies among tasks in small data make parallel execution challenging and less efficient.

▪

Table 5 The proposed PA approach results in the first experiment

 Plain text size byte

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M

N
u

m
b

er
 o

f
P

ro
ce

ss
o

rs

1 0.215 0.356 0.420 0.465 0.624 1.459 1.525 2.524 3.466 3.851 4.715 4.812 5.512

2 0.146 0.328 0.410 0.453 0.612 1.325 1.452 2.152 2.515 2.712 3.612 3.726 4.901

4 0.128 0.278 0.300 0.426 0.652 1.192 1.354 1.025 2.125 2.350 3.735 4.736 4.365

8 0.252 0.295 0.420 0.685 0.859 1.158 1.255 0.951 2.525 2.922 3.912 4.998 5.125

16 0.356 0.385 0.650 0.823 0.956 1.332 1.452 1.458 3.151 4.160 5.165 7.370 8.376

32 0.475 0.482 0.626 1.025 1.158 1.445 1.528 1.929 5.924 6.288 7.433 10.844 11.257

64 0.559 0.782 0.845 1.253 1.454 1.855 1.935 3.255 7.357 8.370 10.024 13.527 15.125

128 0.635 0.879 1.060 1.320 1.919 2.187 3.772 5.241 9.349 10.145 15.622 19.780 22.241

The speedup recodes for the first experiment is calculated and presnted in Fig. 2 and Fig. 3. the following observations

have been identified:

▪ As the number of processors increases, there is a significant improvement in execution time, resulting in a higher speedup.

This is attributed to the parallel nature of the algorithm, where tasks can be divided and processed simultaneously by

multiple processors.

▪ However, there is a point of diminishing returns, where increasing the number of processors beyond a certain threshold

does not lead to further improvements in speedup. This can be attributed to factors such as communication overhead and

resource contention, which can limit the scalability of the parallel execution.

▪ It is important to note that the achieved speedup is highly dependent on the problem size and the degree of parallelism

inherent in the algorithm. Larger problem sizes tend to exhibit better speedup due to a higher potential for parallelization.

http://www.ijsdr.org/

ISSN: 2455-2631 July 2023 IJSDR | Volume 8 Issue 7

IJSDR2307101 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 699

Figure 2 The speedup records for the first experiment, considering plaintext sizes ranging from 1 KB up to 32 KB

Figure 3 The speedup records for the first experiment, considering plaintext sizes ranging from 64 KB up to 4 MB

In second experiment for the PA, different plaintext sizes in bytes with different key size, along with multiple processors

are applied in the PA, the of this experiment presented in Table 6, Table 7, and Table 8. Based on the obtained results, the

following observations have been identified:

▪ When using larger key sizes, there is a decrease in execution time. This due to the increasing of security measures and

complexity in the encryption process.

▪ Smaller key sizes can result in faster execution times but may sacrifice some level of security.

Table 6 The proposed PA approach results in the second experiment with 512-byte key size

 Plain text size in byte

1K 64K 512K

N
u

m
b

er

o
f

P
r

o
ce ss
o

rs

1 8.971 43.306 63.056

0

1

2

3

4

5

6

1 KB 2 KB 4 KB 8 KB 16 KB 32 KB

Sp
ee

d
u

p

Data size

2-Ps 4-Ps 8-Ps 16-Ps 32-Ps 64-Ps 128-Ps

0

1

2

3

4

5

6

64 KB 128 KB 256 KB 512 KB 1 MB 2 MB 4 MB

Sp
ee

d
u

p

Data size

2-Ps 4-Ps 8-Ps 16-Ps 32-Ps 64-Ps 128-Ps

http://www.ijsdr.org/

ISSN: 2455-2631 July 2023 IJSDR | Volume 8 Issue 7

IJSDR2307101 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 700

2 6.515 29.257 39.560

4 4.156 21.456 25.645

8 2.149 12.154 14.126

16 1.892 7.125 12.125

32 1.515 5.685 7.155

64 2.125 9.658 11.698

128 3.584 11.580 13.258

Table 7 The proposed PA approach results in the second experiment with 64-byte key size

 Plain text size in byte

1K 64K 512K

N
u

m
b

er
 o

f
P

ro
ce

ss
o

rs

1 2.562 19.049 30.415

2 1.955 11.256 19.566

4 1.215 7.256 11.257

8 0.763 4.126 8.156

16 0.415 3.561 5.257

32 0.512 5.698 8.966

64 0.563 6.986 9.955

128 0.653 7.986 10.398

Table 8 The proposed PA approach results in the second experiment with 16-byte key size

 Plain text size in byte

1k 64k 512k

N
u

m
b

er
 o

f
P

ro
ce

ss
o

rs

1 0.635 3.772 10.145

2 0.559 1.935 8.370

4 0.475 1.528 6.288

8 0.356 1.452 4.160

16 0.252 1.255 2.922

32 0.128 1.354 2.350

64 0.146 1.452 2.712

128 0.215 1.525 3.851

The speedup recodes for the second experiment is calculated and presented in Fig. 4, Fig. 5, and Fig. 6. the following observations

have been identified

▪ Increasing the number of processors leads to a notable enhancement in execution time and a higher speedup. This is due

to the parallel nature of the algorithm, allowing tasks to be divided and processed concurrently by multiple processors.

However, there is a point of diminishing returns where adding more processors does not yield further speedup

improvements. This can be attributed to factors like communication overhead and resource contention, limiting the

scalability of parallel execution.

▪ Utilizing smaller key sizes can result in faster execution times, but it may come at the expense of compromising some

level of security.

▪ When dealing with larger plaintext, parallel execution demonstrates superior performance compared to smaller plaintext.

This is primarily due to the complexities of task dependencies in small data, making parallel execution less efficient and

challenging.

http://www.ijsdr.org/

ISSN: 2455-2631 July 2023 IJSDR | Volume 8 Issue 7

IJSDR2307101 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 701

Figure 4 The speedup records for the second experiment with 512-byte key size

Figure 5 The speedup records for the second experiment with 64-byte key size

Figure 6 The speedup records for the second experiment with 16-byte key size

0

1

2

3

4

5

6

7

8

9

10

1k 64k 512k

Sp
ee

d
u

p

Data size

2-Ps 4-Ps 8-Ps 16-Ps 32-Ps 64-Ps 128-Ps

0

1

2

3

4

5

6

7

1 KB 64 KB 512 KB

Sp
ee

d
u

p

Data size

2-Ps 4-Ps 8-Ps 16-Ps 32-Ps 64-Ps 128-Ps

0

1

2

3

4

5

6

1 KB 64 KB 512 KB

Sp
ee

d
u

p

Data size

2-Ps 4-Ps 8-Ps 16-Ps 32-Ps 64-Ps 128-Ps

http://www.ijsdr.org/

ISSN: 2455-2631 July 2023 IJSDR | Volume 8 Issue 7

IJSDR2307101 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 702

It is noteworthy that finding the right balance between security and computational efficiency is crucial for any application. When

selecting a key size for parallel execution, it is important to align it with the security requirements and available computing resources.

This decision should be based on a comprehensive analysis of the specific application's needs, taking into account factors such as

data sensitivity and the desired trade-off between security and performance. By carefully considering these aspects, the optimal key

size can be determined to ensure an effective and efficient encryption process in parallel execution. In summary, increasing the

number of processors can significantly improve execution time and speedup in parallel execution. Smaller key sizes can enhance

execution speed but may have security implications, and parallelism is more effective for larger plaintext due to reduced task

dependencies. Careful consideration should be given to optimize the number of processors, key sizes, and plaintext size for achieving

the desired trade-off between performance, security, and parallel efficiency.

V. CONCLUSIONS

In conclusion, this research paper presented a comprehensive analysis of parallel and sequential programming approaches for the

Tiny Encryption Algorithm (TEA) and conducted a thorough performance evaluation considering various execution parameters.

Factors such as data size, key size, processing type, and the number of processors were examined. The findings revealed that, contrary

to expectations, the parallel implementation of TEA on the IMAN1 Supercomputer resulted in longer encryption and decryption

times compared to the sequential implementation. However, it is important to note that the study achieved a remarkable reduction in

execution time, with a notable record of 13.258 seconds observed for a 512k plaintext and 512 key size on a 128-CPU machine.

Furthermore, the research demonstrated significant speed-up across different approaches, indicating notable advancements in this

field. These achievements provide a solid foundation for future research endeavors in parallel and sequential programming of

encryption algorithms. It is important to consider that parallel execution offers advantages in terms of speedup and efficiency.

However, the selection of the number of processors, key size, and data size should be carefully balanced to achieve the desired trade-

off between performance and security. Future studies can build upon these findings to further enhance the parallel and sequential

programming of encryption algorithms.

VI. ACKNOWLEDGEMENT

I would like to express my gratitude to everyone who contributed to the completion of this study. I extend special thanks to those

who reviewed the study and the staff at the IMAN1 Supercomputer. Your collaboration and efforts have greatly contributed to

presenting this study with the highest level of quality and accuracy.

REFERENCES:

[1] D. Wheeler, R. Needham, TEA, “A tiny encryption algorithm. In: Preneel B. (eds) Fast Software Encryption”, Lecture

Notes in Computer Science, 1995, vol. 1, pp. 1008.

[2] S. A. Yee Hunn, S. Z. binti Md. Naziri and N. binti Idris, “The development of tiny encryption algorithm (TEA) crypto-

core for mobile systems”, IEEE International Conference on Electronics Design, Systems and Applications (ICEDSA),

Kuala Lumpur, 2021, vol.1, pp. 45-49.

[3] E. Yarrkov, “Cryptanalysis of XXTEA. Yarrkov 2010 Cryptanalysis OX”, 2010, 254-260.

[4] Royal Hashemite Court,” IMAN1 Supercomputer”. Retrieved June 13, 2023, from

https://rhc.jo/en/gallery/infograph/iman1-supercomputer

[5] S. A. Yee Hunn, S. Z. binti Md. Naziri and N. binti Idris. “The development of tiny encryption algorithm (TEA) crypto-

core for mobile systems”, IEEE International Conference on Electronics Design, Systems and Applications (ICEDSA),

Kuala Lumpur, Malaysia. vol. 1 pp. 45-49.

[6] T. Sampath, B. Manjula, “Suitable encrypting algorithms in Parallel Processing for improved efficiency”, IOP

Conference Series: Materials Science and Engineering, 2020, vol.1, pp. 981.

[7] E., Ghada, A., Heba, R., Mohamed, “A Design of a Fast Parallel-Pipelined Implementation of AES: Advanced

Encryption Standard”, International Journal of Computer Science and Information Technology, 2014, vol. 6, pp. 39-59.

[8] E. Celikel, J. Davidson, and C. Kern, “Parallel performance of des in ecb mode”. In Computer Networks, 2006

International Symposium on”, 2006, vol. 1, pp. 134–139.

[9] E.Hana, “Apply Block Ciphers Using Tiny Encryption Algorithm (TEA)”. Baghdad Science Journal, 7, 1061-1069.

[10] R. Sreeja, P. Varghese, M. Varun, and K, Mohammad. A Secure and Efficient Lightweight Symmetric Encryption

Scheme for Transfer of Text Files between Embedded IoT Devices. Symmetry, 2019, vol. 11, pp. 293-314.

[11] E. Donald, A. Vincent, “Performance Evaluation of Parallel Algorithms”, International Journal of Computer Science and

Engineering, 2022, vol. 9, pp. 10-14.

http://www.ijsdr.org/
https://rhc.jo/en/gallery/infograph/iman1-supercomputer

