Support Functions and Combination Rules in Hyper Power Set and Super Power Set

Kandekar D.N.

Associate Professor & Head Department of Mathematics Dadapatil Rajale Arts & Science College Adinathnagar, Ahmednagar, India..

Abstract- The probability theory and belief function theory are two important tools dealing with uncertainty. The concepts of probability theory and belief function theory are exchangeable with proper modifications. Rarely, authors are using approach from probability theory to belief function theory. The branch of belief function theory viz. evidence theory is useful in many fields such as behavioral sciences, investigation bureaus, data mining etc. The simple support functions are particular type of belief functions. The combination rules of simple support functions are introduced by Dempster [8] in two dimensions for heterogeneous evidences and conflicting evidences. Super power set includes hyper power set and hyper power set includes power set. In this paper, we generalize these combination rules of simple support functions in three dimensions for heterogeneous evidences and conflicting evidences in hyper power set and apply these combination rules of simple support functions for two dimensions for heterogeneous evidences and conflicting evidences in super power set. This approach is supported by an illustrative example. Also, we discuss about combination rules of simple support functions for higher dimensions in hyper power set and super power set.

Index Terms -- Simple support function, belief function, probability density function, hyper power set, super power set.

INTRODUCTION

In the world of uncertainty, each and every incidence occurring in our day to day life, always follows some known or unknown probability distribution. Therefore choice of appropriate probability distribution plays an important role in decision making. Hence it becomes necessary that we should know common characteristics of all probability distributions. Introduction of simple support functions is useful in categorizing cases of belief functions, infact it helps us in withdrawing final conclusion. Super power set consists of all combinations of subsets under study in sense of set operations viz. union, intersection and complementation.

In this paper, firstly, we apply combination rules of simple support functions in three dimensions for heterogeneous evidences and conflicting evidences with cases, in hyper power set. Secondly, we apply combination rules of simple support functions for two dimensions for heterogeneous evidences and conflicting evidences in super power set with illustrative example. Finally, we discuss on combination rules of simple support functions for higher dimensions in hyper power set and super power set. Now we summarize preliminaries of discrete belief functions, evidence theory and power set, hyper power set and super power set.

2 PRELIMERIES

2.1 **Discrete Belief Function Theory**

From Shafer's book [8] and Gawn & Bell book [4], frame of discernment $\Theta = \{\theta_1, \theta_2, \dots, \theta_n\}$. Every element of Θ is a proposition. The propositions of interest, are in one -to -one correspondence with the subsets of Θ . If Θ is *frame of discernment*, then a function $m: 2^{\Theta} \to [0,1]$ is called **basic probability assignment** whenever $m(\emptyset) = 0$ and $\sum_{A \subseteq \Theta} m(A) = 1$. The quantity m(A) is called A's **basic probability number** and it is a measure of the belief committed exactly to A. The total *belief* committed to A is sum of m(B), for all proper subsets B of A. A function $Bel: 2^{\Theta} \rightarrow [0,1]$ is called **belief function** over Θ if it satisfies $Bel(A) = \sum_{B \subset A} m(B)$.

Theorem 2.1 If Θ is a frame of discernment, then a function $Bel: 2^{\Theta} \to [0,1]$ is belief function if and only if it satisfies following conditions

- 1. $Bel(\emptyset) = 0$.
- 2. $Bel(\Theta) = 1$.
- 3. For every positive integer *n* and every collection A_1, A_2, \ldots, A_n of subsets of Θ

$$Bel(A_1 \cup A_2 \cup \ldots \cup A_n) \ge \sum_{I \subset \{1, 2, \cdots, n\}} (-1)^{|I|+1} Bel(\bigcap_{i \in I} A_i).$$

$$\tag{1}$$

Degree of doubt :

$$Dou(A) = Bel(\overline{A}) \text{ or } Bel(A) = 1 - Dou(\overline{A}) \text{ and } pl(A) = 1 - Dou(A) = \sum_{A \cap B \neq \emptyset} m(B)$$
(2)

459

which expresses the extent to which one finds A credible or plausible [8]. In [1, 2, 7], a function $P: \Theta \rightarrow [0,1]$ is called probability function if

- 1. $\forall A \in \Theta, \quad 0 \le P(A) \le 1.$
- 2. $P(\Theta) = 1$.

2.2 Simple Support Functions and Combination Rules

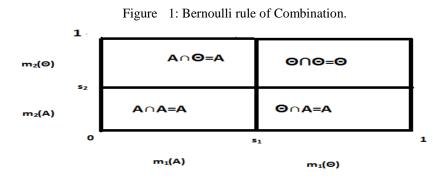
In [3, 8], an evidence supports many propositions discerned by frame of discernment Θ but in different degrees. **Theorem 2.2** Suppose an evidence points precisely and ambiguously to a single non-empty subset A of Θ . The effect of evidence is to provide certain degree of support s for A with $0 \le s \le 1$. Let s be a degree of support for A with $0 \le s \le 1$. The simple support function $S: 2^{\Theta} \rightarrow [0,1]$ is

$$S(B) = \begin{cases} 0 & \text{if } B \text{ does not contain } A \\ s & \text{if } B \text{ contains } A \text{ but } B \neq \Theta. \\ 1 & \text{if } B = \Theta \end{cases}$$
(3)

Here S(B) is degree of support for $B \subseteq \Theta$ and function S is a simple support function focused on A. We convert S into belief function by assigning basic Probability numbers

$$m(C) = \begin{cases} S(A) & \text{if } C = A\\ 1 - S(A) & \text{if } C = \Theta\\ 0 & \text{otherwise.} \end{cases}$$
(4)

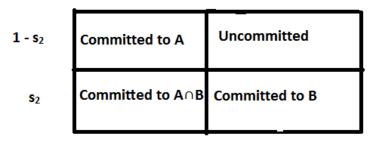
Bernoulli's Rule of Combination [4, 8]:



Theorem 2.3 Suppose one body of evidence have precisely supporting effect for set $A \subset \Theta$ with degree s_1 and the another completely separate body of evidence have precisely supporting effect for set $A \subset \Theta$ with degree s_2 . Then degree of supporting A by these two bodies of evidences together is $m(A) = 1 - (1 - s_1)(1 - s_2)$ with $m(\Theta) = (1 - s_1)(1 - s_2)$.

Heterogeneous Evidences [4, 8]:

Figure 2: Heterogeneous Evidences

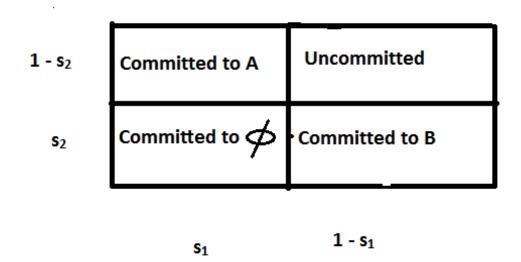


S1	1 - s ₁
----	--------------------

Theorem 2.4 Suppose $A \cap B \neq \emptyset$. Let S_1 be a simple support function focused on A with $S_1(A) = s_1$ and $m(\Theta) = 1 - s_1$. Let S_2 be another simple support function focused on B with $S_2(B) = s_2$ and $m(\Theta) = 1 - s_2$. Then the orthogonal sum $S = S_1 \oplus S_2$ focused on $A \cup B$, have basic probability numbers $m(A \cap B) = s_1 s_2, m(A) = s_1(1 - s_2), m(B) = s_2(1 - s_1)$ and $m(\Theta) = (1 - s_1)(1 - s_2)$ and 0 if C does not contain $A \cap B$ $s_1 s_2$ if C contains $A \cap B$ but neither A nor B s_2 if C contains A but not B s_2 if C contains B but not A $1 - (1 - s_1)(1 - s_2)$ if C contains both A and B and C $\neq \Theta$ 1 if $C = \Theta$ $s_1 = S_1 = S_1$

for all $C \subset \Theta$. Note that $1 - (1 - s_1)(1 - s_2) = s_1 + s_2 - s_1 s_2$ [4, 8].

2.2.1 Conflicting Evidences



Theorem 2.5 If $A \cap B = \emptyset$ then the combination of evidences pointing to A and evidences pointing to B is simple as compared to $A \cap B = \neq \emptyset$. The effect of one body of evidence decreases the effect of other body of evidence. While applying Dempster's rule of combination, we eliminate lower-left rectangle (see the figure of conflicting evidences) and increase the

measures of remaining rectangles by multiplying factor $\frac{1}{1-s_1s_2}$. Let S_1 be a simple support function focused on A with

 $S_1(A) = s_1$. Let S_2 be a simple support function focused on B with $S_2(B) = s_2$. Then the orthogonal sum $S = S_1 \oplus S_2$ focused on $A \cup B$ have basic probability numbers:

$$m(C) = \begin{cases} 0 & \text{if } C = \emptyset \\ \frac{s_1(1-s_2)}{1-s_1s_2} & \text{if } C = A \\ \frac{s_2(1-s_1)}{1-s_1s_2} & \text{if } C = B \\ \frac{(1-s_1)(1-s_2)}{1-s_1s_2} & \text{if } C = \Theta. \end{cases}$$
(6)

Also, the orthogonal sum S of simple support functions S_1 and S_2 focused on $A \cup B$, is given by

$$S(C) = \begin{cases} 0 & \text{if } C \text{ contains neither A nor B} \\ \frac{s_1(1-s_2)}{1-s_1s_2} & \text{if } C \text{ contains A but not B} \\ \frac{s_2(1-s_1)}{1-s_1s_2} & \text{if } C \text{ contains B but not A} \\ \frac{s_1(1-s_2)+s_2(1-s_1)}{1-s_1s_2} & \text{if } C \text{ contains A and B but } C \neq \Theta \\ 1 & \text{if } C = \Theta \end{cases}$$
(7)

for all $C \subset \Theta$.

A belief function is called **separable support function** if it is a simple support function or equal to the orthogonal sum of two or more simple support functions.

$$S = S_1 \oplus S_2 \oplus, \dots, \oplus S_n.$$

where $n \ge 1$ and each S_i is a simple support function citeGuanBell1991, Shafer1976. This representation is unique since Dempster's rule of combination is commutative and associative.

In [5], degrees of support are substituted by probabilities obtained by probability distributions and in [6], a new basic probability p(A)

assignment is introduced : For any $A \subseteq \Theta$, $m(A) = \frac{p(A)}{2^{n-1}}$.

2.3 Super Power Set

A set 2^{Θ} is called power set of Θ if it closed for union of subsets of Θ . A set D^{Θ} is called hyper power set of Θ if it closed for union and intersection of subsets of Θ . A set S^{Θ} is called super power set of Θ if it closed for union, intersection and complementation of subsets of Θ [4, 3].

3 Heterogeneous Evidences for 3D in Hyper Power Set

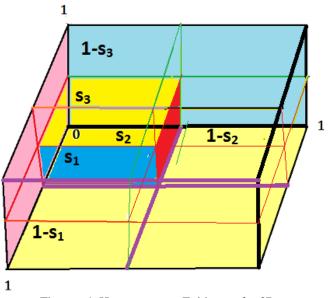


Figure 4: Heterogeneous Evidences for 3D

Now, we generalize result of heterogeneous evidences in two dimensions (2D) to three dimensions (3D). We combine evidence which points to a proposition A_1 with evidences which does not point to a proposition A_1 but to different propositions which are compatible with proposition A_1 viz. propositions A_2 , A_3 . Such combination provides a support not only for A_1 , A_2 and A_3 separately but also for the conjunction $A_1 \cap A_2 \cap A_3$.

Theorem 3.1 Suppose $A_1 \cap A_2 \cap A_3 \neq \emptyset$. Let S_j , j = 1,2,3 be a simple support function focused on A_j with $S_j(A) = s_j(A)$. We combine S_1, S_2 and S_3 . By Dempster's rule, $A_1 \cap A_2 \cap A_3$ is supported by the quantity $s_1(A_1)s_2(A_2)s_3(A_3)$. Then by figure of heterogeneous evidences, the orthogonal sum $S = S_1 \oplus S_2 \oplus S_3$ has basic probability numbers as:

$$\begin{split} m(A_1 \cap A_2 \cap A_3) &= s_1(A_1)s_2(A_2)s_3(A_3), \\ m(A_1 \cap A_2) &= s_1(A_1)s_2(A_2)(1-s_3(A_3)), \\ m(A_1 \cap A_3) &= s_1(A_1)s_3(A_3)(1-s_2(A_2)), \\ m(A_2 \cap A_3) &= s_2(A_2)s_3(A_3)(1-s_1(A_1)), \\ m(A_1) &= s_1(A_1)(1-s_2(A_2))(1-s_3(A_3)) \\ m(A_2) &= s_2(A_2)(1-s_1(A_1))(1-s_3(A_3)) \\ m(A_3) &= s_3(A_3)(1-s_1(A_1))(1-s_2(A_2)) \end{split}$$

$$m(\Theta) = (1 - s_1(A_1))(1 - s_2(A_2))(1 - s_3(A_3))$$

and m(B) = 0 if B is none of the above mentioneds ubsets of Θ . Also, orthogonal sum $S = S_1 \oplus S_2 \oplus S_3$ is

$$S(C) = \begin{cases} 0 & \text{if} \\ s_1(A_1)s_2(A_2)s_3(A_3) & \text{if} \\ s_1(A_1)s_2(A_2) \\ s_1(A_1)s_2(A_2) \\ s_1(A_1)s_2(A_2) + s_1(A_1)s_3(A_3) \\ s_2(A_2)s_3(A_3) \\ s_2(A_2)s_3(A_3) \\ s_1(A_1)s_2(A_2) + s_2(A_2)s_3(A_3) \\ s_1(A_1)s_2(A_2) + s_2(A_2)s_3(A_3) \\ s_1(A_1)s_2(A_2) + s_2(A_2)s_3(A_3) \\ s_1(A_1)s_2(A_2) + s_1(A_1)s_3(A_3) \\ s_1(A_1)s_2(A_2) + s_1(A_1)s_2(A_2)s_3(A_3) \\ s_1(A_1)s_2(A_2) + s_1(A_1)s_2(A_2)s_3(A_3) \\ s_1(A_1) \\ s_2(A_2) \\ s_1(A_1) \\ s_1(A_1) \\ s_2(A_2) \\ s_1(A_1) \\ s_2(A_2) \\ s_1(A_1) \\ s_2(A_2) + s_1(A_1)s_2(A_2)(1 - s_3(A_3)) \\ s_2(A_2) + s_1(A_1)s_3(A_3)(1 - s_2(A_2)) \\ s_1(A_1) + s_2(A_2)s_3(A_3)(1 - s_1(A_1)) \\ s_1(A_1) + s_2(A_2) - s_1(A_1)s_2(A_2) \\ s_1(A_1) + s_3(A_3) - s_1(A_1)s_3(A_3) \\ s_2(A_2) + s_3(A_3) - s_1(A_1)s_3(A_3) \\ s_2(A_2) + s_3(A_3) - s_2(A_2)s_3(A_3) \\ 1 - (1 - s_1(A_1))(1 - s_2(A_2))(1 - s_3(A_3)) \\ \text{if} \\ 1 \\ \end{cases}$$

if C does not contain $A_1 \cap A_2 \cap A_3$ C contains $A_1 \cap A_2 \cap A_3$ but neither $A_1 \cap A_2$ nor $A_1 \cap A_3$ nor $A_2 \cap A_3$ if C contains $A_1 \cap A_2$ but neither $A_1 \cap A_3$ nor $A_2 \cap A_3$ if C contains $A_1 \cap A_3$ but neither $A_1 \cap A_2$ nor $A_2 \cap A_3$ if C contains $A_2 \cap A_3$ but neither $A_1 \cap A_2$ nor $A_1 \cap A_3$ if C contains $A_1 \cap A_2$ and $A_1 \cap A_3$ but not $A_2 \cap A_3$ if C contains $A_1 \cap A_2$ and $A_2 \cap A_3$ but not $A_1 \cap A_3$ if C contains $A_1 \cap A_3$ and $A_2 \cap A_3$ but not $A_1 \cap A_2$ if C contains $A_1 \cap A_2, A_1 \cap A_3$ and $\cap A_3$ but not their proper superset in Θ C contains A_1 but neither A_2 nor A_3 C contains A_2 but neither A_1 nor A_3 C contains A_3 but neither A_2 nor A_3 if C contains $(A_1 \cap A_2) \cup A_3$ but not its propersuperset in Θ if C contains $(A_1 \cap A_3) \cup A_2$ but not its propersuperset in Θ if C contains $(A_2 \cap A_3) \cup A_1$ but no tits proper superset in Θ if C contains A_1 and A_2 but not A_3 if C contains A_1 and A_3 but not A_2 if C contains A_2 and A_3 but not A_1 C contains A_1 , A_2 and A_3 but $C \neq \Theta$ (8) if $C = \Theta$

for all $C \subseteq \Theta$.

Proof: Here, for basic probability numbers, we consider sets which are intersection of any number of sets among A_1, A_2 , and A_3 . For i = 1, 2, 3; if set A_i present in set under consideration then multiply by s_i and if set A_i absent in set under consideration then multiply by $(1-s_i)$. The sum of probability numbers of all subsets of Θ is one. For value of S(C), we consider immediate proper superset C of subset of Θ , which does not contain properly any super set of subset of Θ under consideration. For calculation of S(C), we consider subsets of Θ which are contained in C. For i = 1, 2, 3; if set A_i present in set under consideration. For calculation then multiply by $s_i(A_i)$ and if set A_i absent in set under consideration then multiply by $(1-s_i(A_i))$. Same rule is applied if C contains more subsets of Θ . Here

$$s_{1}(A_{1})(1-s_{2}(A_{2}))(1-s_{3}(A_{3})) + s_{2}(A_{2})(1-s_{1}(A_{1}))(1-s_{3}(A_{3})) + s_{3}(A_{3})(1-s_{1}(A_{1}))(1-s_{2}(A_{2})) + s_{1}(A_{1})s_{2}(A_{2})(1-s_{3}(A_{3})) + s_{1}(A_{1})s_{3}(A_{3})(1-s_{2}(A_{2})) + s_{2}(A_{2})s_{3}(A_{3})(1-s_{1}(A_{1})) + s_{1}(A_{1})s_{2}(A_{2})s_{3}(A_{3}) = s_{1}(A_{1}) + s_{2}(A_{2}) + s_{3}(A_{3}) - s_{1}(A_{1})s_{2}(A_{2}) - s_{1}(A_{1})s_{3}(A_{3}) - s_{2}(A_{2})s_{3}(A_{3}) + s_{1}(A_{1})s_{2}(A_{2})s_{3}(A_{3}) = 1 - (1 - s_{1}(A_{1}))(1 - s_{2}(A_{2}))(1 - s_{3}(A_{3})).$$

3.1 Conflicting Evidences in Hyper Power Set

Now, we generalize result of conflicting evidences in two dimensions (2D) to three dimensions (3D). For three dimensions, conflicting evidences have following cases:

- 1. Evidences are pairwise disjoint.
- 2. $A_1 \cap A_2 \cap A_3 = \emptyset$.
- 3. Mixing of above two cases.

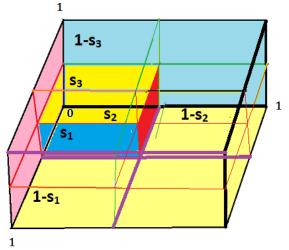


Figure 5: Conflicting Evidences for 3D

Case I: Evidences are pairwise disjoint

Theorem 3.2 Suppose that for i = 1, 2, 3; simple support function S_i is focused on $A_i i$ with degree of support $s_i(A_i)$. Then the orthogonal sum S of S_1, S_2 and S_3 have basic probability numbers

$$\begin{split} m(A_1) &= s_1(A_1)(1 - s_2(A_2))(1 - s_3(A_3))/K, \\ m(A_2) &= s_2(A_2)(1 - s_1(A_1))(1 - s_3(A_3))/K, \\ m(A_3) &= s_3(A_3)(1 - s_1(A_1))(1 - s_2(A_2))/K, \\ m(\Theta(= (1 - s_1(A_1))(1 - s_2(A_2))(1 - s_3(A_3))/K, \\ n(B) &= 0 \text{ if } B \text{ is none of the above mentioned subsets of } \Theta, \end{split}$$

where

 $K = 1 - s_1(A_1)s_2(A_2)s_3(A_3) - s_1(A_1)s_2(A_2)(1 - s_3(A_3)) - s_1(A_1)s_3(A_3)(1 - s_2(A_2)) - s_2(A_2)s_3(A_3)(1 - s_1(A_1)) \quad .$

Also, sum of basic probability numbers corresponding to all parallelepipeds is one and orthogonal sum $S = S_1 \oplus S_2 \oplus S_3$ is a separable support function and is given by

$$S(C) = \begin{cases} 0 & \text{If } C \text{ contains neither } A_1 \text{ nor } A_2 \text{ nor } A_3 \\ \frac{s_1(A_1)(1-s_2(A_2))(1-s_3(A_3))}{K} & \text{If } C \text{ contains } A_1 \text{ but neither } A_2 \text{ nor } A_3. \\ \frac{s_2(A_2)(1-s_1(A_1))(1-s_2(A_2))}{K} & \text{If } C \text{ contains } A_2 \text{ but neither } A_1 \text{ nor } A_3. \\ \frac{s_3(A_3)(1-s_1(A_1))(1-s_2(A_2))}{K} & \text{If } C \text{ contains } A_3 \text{ but neither } A_1 \text{ nor } A_2. \\ \frac{s_1(A_1)(1-s_2(A_2))(1-s_3(A_3))}{K} & \text{If } C \text{ contains } A_1 \text{ and } A_2 \text{ but not } A_3. \\ \frac{s_2(A_2)(1-s_1(A_1))(1-s_3(A_3))}{K} & \text{If } C \text{ contains } A_1 \text{ and } A_2 \text{ but not } A_3. \\ \frac{s_2(A_2)(1-s_1(A_1))(1-s_3(A_3))}{K} & \text{If } C \text{ contains } A_1 \text{ and } A_3 \text{ but not } A_2. \\ \frac{s_3(A_3)(1-s_1(A_1))(1-s_2(A_2))}{K} & \text{If } C \text{ contains } A_1 \text{ and } A_3 \text{ but not } A_2. \\ \frac{s_3(A_3)(1-s_1(A_1))(1-s_2(A_2))}{K} & \text{If } C \text{ contains } A_2 \text{ and } A_3 \text{ but not } A_1. \\ \frac{s_3(A_3)(1-s_1(A_1))(1-s_2(A_2))}{K} & \text{If } C \text{ contains } A_1, A_2 \text{ and } A_3 \text{ but not } A_1. \\ \frac{s_3(A_3)(1-s_1(A_1))(1-s_3(A_3))}{K} & \text{If } C \text{ contains } A_1, A_2 \text{ and } A_3 \text{ but } C \neq \Theta. \\ \frac{s_2(A_2)(1-s_1(A_1))(1-s_3(A_3))}{K} & \text{If } C \text{ contains } A_1, A_2 \text{ and } A_3 \text{ but } C \neq \Theta. \\ \frac{s_3(A_3)(1-s_1(A_1))(1-s_2(A_2))}{K} & \text{If } C \text{ contains } A_1, A_2 \text{ and } A_3 \text{ but } C \neq \Theta. \\ \frac{s_3(A_3)(1-s_1(A_1))(1-s_2(A_2))}{K} & \text{If } C \text{ contains } A_1, A_2 \text{ and } A_3 \text{ but } C \neq \Theta. \end{cases}$$

for all $C \subseteq \Theta$.

Proof: Here we consider all subsets of Θ which are considered in above theorem. By figure of conflicting evidences for three dimensions, the parallelopipeds corresponding to $A_1 \cap A_2, A_1 \cap A_3, A_2 \cap A_3$ and $A_1 \cap A_2 \cap A_3$ are related to \emptyset . For application of Dempster's rule, we must eliminate parallelopipeds which are related to \emptyset viz. parallelopipeds $s_1(A_1) \cap s_2(A_2), s_1(A_1) \cap s_3(A_3), s_2(A_2) \cap s_3(A_3)$ and $s_1(A_1) \cap s_2(A_2) \cap s_3(A_3)$. Therefore decrease the measures of the remaining parallelopipeds by quantity which is reciprocal of $1-s_1(A_1)s_2(A_2)s_3(A_3)-s_1(A_1)s_2(A_2)(1-s_3(A_3))-s_1(A_1)s_3(A_3)(1-s_2(A_2))-s_2(A_2)s_3(A_3)(1-s_1(A_1))$.

Here, for basic probability numbers, we consider sets $A_1, A_2, \text{and}A_3$. For i = 1, 2, 3; if set A_i present in set under consideration then multiply by

$$\frac{s_i(A_i) \prod_{j=1; i \neq j}^3 (1 - s_j(A_j))}{(1 - s_j(A_j))}$$
. The sum

 $\frac{1-s_1(A_1)s_2(A_2)s_3(A_3)-s_1(A_1)s_2(A_2)(1-s_3(A_3))-s_1(A_1)s_3(A_3)(1-s_2(A_2))-s_2(A_2)s_3(A_3)(1-s_1(A_1))}{1-s_1(A_1)s_2(A_2)s_3(A_3)-s_1(A_1)s_2(A_2)(1-s_1(A_1))-s_1(A_1)s_3(A_3)(1-s_2(A_2))-s_2(A_2)s_3(A_3)(1-s_1(A_1))}$. The sum of basic probability numbers of all subsets of Θ under consideration is one.

For value of S(C), we consider immediate proper super set C of subset of Θ , which does not contain properly any super set of subset of Θ under consideration. For calculation of S(C), we consider subsets of Θ which are contained in C. For i = 1,2,3; if set A_i present in set under consideration then add quantity

$$S_i(A_i) \prod_{j=1; i \neq j}^3 (1 - S_j(A_j))$$

 $\frac{1}{1-s_1(A_1)s_2(A_2)s_3(A_3)-s_1(A_1)s_2(A_2)(1-s_3(A_3))-s_1(A_1)s_3(A_3)(1-s_2(A_2))-s_2(A_2)s_3(A_3)(1-s_1(A_1)))}$. Same rule is applied if *C* contains more subsets of Θ . **Case II:** $A_1 \cap A_2 \cap A_3 = \emptyset$:

Theorem 3.3 Suppose that for i = 1, 2, 3; simple support function S_i is focused on $A_i i$ with degree of support $s_i(A_i)$. Then

the orthogonal sum $S = S_1 \oplus S_2 \oplus S_3$ have basic probability numbers

$$\begin{split} m(A_1 \cap A_2) &= s_1(A_1)s_2(A_2)(1-s_3(A_3))/K, \\ m(A_1 \cap A_3) &= s_1(A_1)s_3(A_3)(1-s_2(A_2))/K, \\ m(A_2 \cap A_3) &= s_2(A_2)s_3(A_3)(1-s_1(A_1))/K, \\ m(A_1) &= s_1(A_1)(1-s_2(A_2))(1-s_3(A_3))/K, \\ m(A_2) &= s_2(A_2)(1-s_1(A_1))(1-s_3(A_3))/K, \\ m(A_3) &= s_3(A_3)(1-s_1(A_1))(1-s_2(A_2))/K, \\ m(\Theta(= (1-s_1(A_1))(1-s_2(A_2))(1-s_3(A_3))/K, \\ m(B) &= 0 \text{ if } B \text{ is none of the above mentioned subsets of } \Theta, \end{split}$$

where $K = 1 - s_1(A_1)s_2(A_2)s_3(A_3)$.

Also, sum of basic probability numbers corresponding to all parallelepipeds is one and the orthogonal sum $S = S_1 \oplus S_2 \oplus S_3$ is a separable support function and is given by

If C contains neither $A_1 \cap A_2$ nor $A_1 \cap A_3$

$$S(C) = \begin{cases} 0 \\ \frac{s_1(A_1)s_2(A_2)(1-s_3(A_3))}{K} \\ \frac{s_1(A_1)s_3(A_3)(1-s_2(A_2))}{K} \\ \frac{s_2(A_2)s_3(A_3)(1-s_1(A_1))}{K} \\ \frac{s_1(A_1)s_2(A_2)(1-s_3(A_3))}{K} + \frac{s_1(A_1)s_3(A_3)(1-s_2(A_2))}{K} \\ \frac{s_1(A_1)s_2(A_2)(1-s_3(A_3))}{K} + \frac{s_2(A_2)s_3(A_3)(1-s_1(A_1))}{K} \\ \frac{s_1(A_1)s_2(A_2)(1-s_3(A_3))}{K} + \frac{s_2(A_2)s_3(A_3)(1-s-1(A_1))}{K} \\ \frac{s_1(A_1)s_2(A_2)(1-s_3(A_3))}{K} + \frac{s_1(A_1)s_3(A_3)(1-s_2(A_2))}{K} \\ \frac{s_1(A_1)s_2(A_2)(1-s_3(A_3))}{K} + \frac{s_1(A_1)s_3(A_3)(1-s_2(A_2))}{K} \\ \frac{s_1(A_1)-s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_2(A_2)-s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_2(A_2)-s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_3(A_3)+s_1(A_1)s_3(A_3)-2s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_1(A_1)+s_2(A_2)s_3(A_3)-2s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_1(A_1)+s_2(A_2)-s_1(A_1)s_2(A_2)-s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_1(A_1)+s_2(A_2)-s_1(A_1)s_2(A_2)-s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_1(A_1)+s_2(A_2)-s_1(A_1)s_2(A_2)-s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_1(A_1)+s_3(A_3)-s_1(A_1)s_2(A_3)-s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_1(A_1)+s_3(A_3)-s_1(A_1)s_2(A_3)-s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_1(A_1)+s_3(A_3)-s_1(A_1)s_2(A_3)-s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_1(A_1)+s_3(A_3)-s_1(A_1)s_2(A_3)-s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_2(A_2)+s_3(A_3)-s_2(A_2)s_3(A_3)-s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_2(A_2)+s_3(A_3)-s_2(A_2)s_3(A_3)-s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_1(A_1)+s_3(A_3)-s_1(A_1)s_2(A_3)-s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_1(A_1)+s_3(A_3)-s_1(A_1)s_2(A_3)-s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_2(A_2)+s_3(A_3)-s_2(A_2)s_3(A_3)-s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_1(A_1)+s_3(A_3)-s_1(A_1)s_3(A_3)-s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_1(A_1)+s_3(A_3)-s_1(A_1)s_3(A_3)-s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_1(A_1)+s_3(A_3)-s_1(A_1)s_3(A_3)-s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_1(A_1)+s_3(A_3)-s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_1(A_1)+s_2(A_2)(A_2)+s_1(A_3)-s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_1(A_1)+s_2(A_2)(A_2)(A_1)-s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_1(A_1)+s_2(A_2)(A_1)-s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_1(A_1)+s_2(A_2)(A_1)-s_1(A_1)s_2(A_2)s_3(A_3)}{$$

nor
$$A_2 \cap A_3$$

if C contains $A_1 \cap A_2$ but neither
 $A_1 \cap A_3$ nor $A_2 \cap A_3$
if C contains $A_1 \cap A_3$ but neither
 $A_1 \cap A_2$ nor $A_2 \cap A_3$
if C contains $A_2 \cap A_3$ but neither
 $A_1 \cap A_2$ nor $A_1 \cap A_3$
if C contains $A_1 \cap A_2$ and
 $A_1 \cap A_3$ but not $A_2 \cap A_3$
if C contains $A_1 \cap A_2$ and
 $A_2 \cap A_3$ but not $A_1 \cap A_3$
if C contains $A_1 \cap A_2$ and
 $A_2 \cap A_3$ but not $A_1 \cap A_2$
if C contains $A_1 \cap A_2$, $A_1 \cap A_3$ and
 $A_2 \cap A_3$ but not their proper superset in Θ
if C contains $A_1 \cap A_2$, $A_1 \cap A_3$ and
 $A_2 \cap A_3$ but not their proper superset in Θ
if C contains A_2 but neither A_2 nor A_3
if C contains A_2 but neither A_2 nor A_3
if C contains A_3 but neither A_2 nor A_3
if C contains A_3 but neither A_2 nor A_3
if C contains A_3 but neither A_2 nor A_3
if C contains A_3 but neither A_2 nor A_3
if C contains $(A_1 \cap A_2) \cup A_3$
but not its proper superset in Θ
if C contains $(A_2 \cap A_3) \cup A_2$
but not its proper superset in Θ
if C contains A_1 and A_2 but not A_3
if C contains A_1 and A_2 but not A_3
if C contains A_1 and A_3 but not A_2
if C contains A_1 and A_3 but not A_1
if C contains A_1 and A_3 but not A_1
if C contains A_1 and A_3 but not A_1
if C contains A_1 , A_2 and A_3 but $C \neq \Theta$
if C = Θ

(10)

for all $\ C \subseteq \Theta$.

Proof: Here we consider all subsets of Θ which are considered in heterogeneous evidences in 3D. By figure of conflicting evidence for three dimensions, the parallelopiped $A_1 \cap A_2 \cap A_3$ is related to \emptyset . For application of Dempster's rule, we eliminate corresponding parallelopipeds. Therefore decrease the measures of the remaining parallelopiped by quantity $\frac{1}{1-s_1(A_1)s_2(A_2)s_3(A_3)}$. let $K = 1-s_1(A_1)s_2(A_2)s_3(A_3)$. The basic probability numbers are obtained from basic probability numbers of all subsets of Θ except $A_1 \cap A_2 \cap A_3$ by multiplying K. Here sum of basic probability numbers of all subsets of Θ under consideration is one. We apply remaining procedure of calculation of S(C) similar to Case I.

Case III :- Mixing of Above Two Cases:

July 2023 IJSDR | Volume 8 Issue 7

In this case, any two evidences may be heterogeneous or conflicting. If given two evidences are heterogeneous then their intersection is not related to \emptyset . If given two evidences are conflicting then their intersection is related to \emptyset . Such combinations of evidences should be done for all possible pairs of given evidences. The effect of conflicting evidences is taken into account while calculating the value of K as in above cases. Also eliminate cases in S(C) whose intersection is related to \emptyset . As Dempster's rule of combination is associative and commutative hence Bernaulli's rule of combination, the order of combination of support functions is not important.

Theorem 3.4 Suppose that for i = 1, 2, 3; simple support function S_i is focused on $A_1 i$ with degree of support $s_i(A_i)$ and the parallelopiped $A_2 \cap A_3$ is related to \emptyset . Then the orthogonal sum $S = S_1 \oplus S_2 \oplus S_3$ have basic probability numbers

$$m(A_1 \cap A_2) = s_1(A_1)s_2(A_2)(1 - s_3(A_3))/K,$$

$$m(A_1 \cap A_3) = s_1(A_1)s_3(A_3)(1 - s_2(A_2))/K,$$

$$m(A_1) = s_1(A_1)(1 - s_2(A_2))(1 - s_3(A_3))/K,$$

$$m(A_2) = s_2(A_2)(1 - s_1(A_1))(1 - s_3(A_3))/K,$$

$$m(A_3) = s_3(A_3)(1 - s_1(A_1))(1 - s_2(A_2))/K,$$

$$m(\Theta(=(1 - s_1(A_1))(1 - s_2(A_2))(1 - s_3(A_3))/K,$$

and m(B) = 0 if B is none of the above mentioned subsets of Θ .

where $K = 1 - s_2(A_2)s_3(A_3) - s_1(A_1)s_2(A_2)s_3(A_3)$.

Also, sum of basic probability numbers corresponding to all parallelopipeds is one and the orthogonal sum $S = S_1 \oplus S_2 \oplus S_3$ is a separable support function and is given by

$$S(C) = \begin{cases} 0 \\ \frac{s_1(A_1)s_2(A_2)(1-s_3(A_3))}{K} \\ \frac{s_1(A_1)s_2(A_2)(1-s_3(A_3))}{K} \\ \frac{s_1(A_1)s_2(A_2)(1-s_3(A_3))}{K} + \frac{s_1(A_1)s_3(A_3)(1-s_2(A_2))}{K} \\ \frac{s_1(A_1)-s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_2(A_2)-s_2(A_2)s_3(A_3)}{K} \\ \frac{s_3(A_3)-s_2(A_2)s_3(A_3)}{K} \\ \frac{s_3(A_3)+s_1(A_1)s_2(A_2)-s_2(A_2)s_3(A_3)-s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_2(A_2)+s_1(A_1)s_3(A_3)-s_2(A_2)s_3(A_3)-s_1(A_1)s_2(A_2)s_3(A_3)}{K} \\ \frac{s_1(A_1)+s_2(A_2)-s_1(A_1)s_2(A_2)-s_2(A_2)s_3(A_3)}{K} \\ \frac{s_1(A_1)+s_3(A_3)-s_1(A_1)s_3(A_3)-s_2(A_2)s_3(A_3)}{K} \\ \frac{s_2(A_2)+s_3(A_3)-s_1(A_1)s_3(A_3)-s_2(A_2)s_3(A_3)}{K} \\ \frac{s_2(A_2)+s_3(A_3)-s_1(A_1)s_3(A_3)-s_2(A_2)s_3(A_3)}{K} \\ \frac{s_2(A_2)+s_3(A_3)-s_1(A_1)s_3(A_3)-s_2(A_2)s_3(A_3)}{K} \\ \frac{s_2(A_2)+s_3(A_3)-s_2(A_2)s_3(A_3)}{K} \\ \frac{s_2(A_2)+s_3(A_3)-s_2(A_2)s_3$$

If C contains neither $A_1 \cap A_2$ nor $A_1 \cap A_3$ if C contains $A_1 \cap A_2$ but not $A_1 \cap A_3$ if C contains $A_1 \cap A_3$ but not $A_1 \cap A_2$ if C contains $A_1 \cap A_2$ and $A_1 \cap A_2$ if C contains A_1 but neither A_2 nor A_3 if C contains A_2 but neither A_1 nor A_3 if C contains A_3 but neither A_2 nor A_3 if C contains $(A_1 \cap A_2) \cup A_3$ but not its proper superset in Θ if C contains $(A_1 \cap A_3) \cup A_2$ but not its proper superset in Θ if C contains A_1 and A_2 but not A_3 if C contains A_1 and A_3 but not A_2 if C contains A_2 and A_3 but not A_1 if C contains A_1 , A_2 and A_3 but $C \neq \Theta$ if $C = \Theta$

for all $C \subseteq \Theta$.

Proof: Here we consider all subsets of Θ which are considered in conflicting evidences in 3D in Case II. By figure of conflicting evidence for three dimensions, WOLOG, assume that the parallelopiped is related to $A_2 \cap A_3 = \emptyset$ hence $A_1 \cap A_2 \cap A_3 = \emptyset$. Here $A_1 \cap A_2 \neq \emptyset$ and $A_1 \cap A_3 \neq \emptyset$. For application of Dempster's rule, we eliminate corresponding parallelepipeds viz. $A_2 \cap A_3$ and $A_1 \cap A_2 \cap A_3$. Therefore we decrease the measures of the remaining parallelopipeds by quantity $\frac{1}{1-s_2(A_2)s_3(A_3)-s_1(A_1)s_2(A_2)s_3(A_3)}$. Let $K = 1-s_2(A_2)s_3(A_3)-s_1(A_1)s_2(A_2)s_3(A_3)$. The basic probability

(11)

numbers are obtained from basic probability numbers of all subsets of Θ except $A_2 \cap A_3$ and $A_1 \cap A_2 \cap A_3$ by multiplying K. Here sum of basic probability numbers of all subsets of Θ under consideration is one. We apply remaining procedure of calculation of S(C) similar to Case II.

Simillarly, we can apply other cases only one pair of evidences are conflicting and two pairs of evidences are conflicting.

4 Combination of Evidences in 2D in Super Power Set

Now we replace hyper power set by super power set. The complements of subsets in hyper power set are included.

4.1 Heterogeneous Evidences in 2D in Super Power Set

We have super power set for subsets A and B of Θ as $\{\emptyset, A \cap B, A, B, A \cup B, c(A \cap B), c(A), c(B), c(A \cup B), c(\emptyset) = \Theta\},\$

where c(X) = complement of subset X of Θ in Θ .

Theorem 4.1 Suppose $A \cap B \neq \emptyset$. Let S_1 be a simple support function focused on A with $S_1(A) = s_1$. Let S_2 be another simple support function focused on B with $S_2(B) = s_2$. Then the orthogonal sum $S = S_1 \oplus S_2$ focused on $A \cup B$, have basic probability numbers $m(A \cap B) = s_1s_2$, $m(A) = s_1(1-s_2)$, $m(B) = s_2(1-s_1)$ and $m(\Theta) = (1-s_1)(1-s_2)$. Also,

$$S(C) = \begin{cases} 0 & \text{if } C \text{ does not contain } A \cap B \\ s_1s_2 & \text{if } C \text{ contains } A \text{ but neither } A \text{ nor } B \\ s_1 & \text{if } C \text{ contains } A \text{ but not } B \\ s_2 & \text{if } C \text{ contains } B \text{ but not } A \\ 1 - (1 - s_1)(1 - s_2) & \text{if } C \text{ contains both } A \text{ and } B \text{ and } C \neq \Theta \\ (1 - s_1)(1 - s_2) & \text{if } C \text{ contains } c(A \cup B) \text{ but not its proper superset in } \Theta \\ 1 - s_1 & \text{if } C \text{ contains } c(A) \text{ but not its proper superset in } \Theta \\ 1 - s_2 & \text{if } C \text{ contains } c(B) \text{ but not its proper superset in } \Theta \\ 1 - s_1s_2 & \text{if } C \text{ contains } c(A \cap B) \text{ but not its proper superset in } \Theta \\ 1 & \text{if } C = \Theta \end{cases}$$
(12)

for all $C \subset \Theta$.

Proof: Here we apply method of heterogeneous evidences in 2D with subsets from super power set of Θ . Also, $1-(1-s_1)(1-s_2) = s_1 + s_2 - s_1 s_2$. While obtaining support functions for complement of subsets of Θ , we can use result : For any subset $A \subseteq \Theta$, Bel(c(A)) = 1 - Pl(A), since support function is a belief function.

4.1.1 Conflicting Evidences in 2D in Super Power Set

Theorem 4.2 If S_1 be a simple support function focused on A with $S_1(A) = s_1$ and S_2 be a simple support function focused on B with $S_2(B) = s_2$ and $A \cap B = \emptyset$. Then the **orthogonal sum** $S = S_1 \oplus S_2$ focused on $A \cup B$ have basic probability numbers:

$$m(C) = \begin{cases} 0 & \text{if } C = \emptyset \\ \frac{s_1(1-s_2)}{1-s_1s_2} & \text{if } C = A \\ \frac{s_2(1-s_1)}{1-s_1s_2} & \text{if } C = B \\ \frac{(1-s_1)(1-s_2)}{1-s_1s_2} & \text{if } C = \Theta. \end{cases}$$
(13)

Also, the orthogonal sum S of simple support functions S_1 and S_2 focused on $A \cup B$, is given by

$$S(C) = \begin{cases} 0 & \text{if } C \text{ contains neither A nor B} \\ \frac{s_1(1-s_2)}{1-s_1s_2} & \text{if } C \text{ contains A but not B} \\ \frac{s_2(1-s_1)}{1-s_1s_2} & \text{if } C \text{ contains B but not A} \\ \frac{s_1(1-s_2)+s_2(1-s_1)}{1-s_1s_2} & \text{if } C \text{ contains both A and B and } C \neq \Theta \\ 1-\frac{s_1(1-s_2)+s_2(1-s_1)}{1-s_1s_2} & \text{if } C \text{ contains c} (A \cup B) \text{ but not its proper superset in } \Theta \\ 1-\frac{s_1(1-s_2)}{1-s_1s_2} & \text{if } C \text{ contains c} (A) \text{ but not its proper superset in } \Theta \\ 1-\frac{s_2(1-s_1)}{1-s_1s_2} & \text{if } C \text{ contains c} (B) \text{ but not its proper superset in } \Theta \\ 1-\frac{s_2(1-s_1)}{1-s_1s_2} & \text{if } C \text{ contains c} (B) \text{ but not its proper superset in } \Theta \\ 1-\frac{s_2(1-s_1)}{1-s_1s_2} & \text{if } C \text{ contains c} (B) \text{ but not its proper superset in } \Theta \\ 1-\frac{s_2(1-s_1)}{1-s_1s_2} & \text{if } C \text{ contains c} (B) \text{ but not its proper superset in } \Theta \\ 1-\frac{s_2(1-s_1)}{1-s_1s_2} & \text{if } C \text{ contains c} (B) \text{ but not its proper superset in } \Theta \\ 1-\frac{s_2(1-s_1)}{1-s_1s_2} & \text{if } C \text{ contains c} (B) \text{ but not its proper superset in } \Theta \\ 1-\frac{s_2(1-s_1)}{1-s_1s_2} & \text{if } C \text{ contains c} (B) \text{ but not its proper superset in } \Theta \\ 1-\frac{s_2(1-s_1)}{1-s_1s_2} & \text{if } C \text{ contains c} (B) \text{ but not its proper superset in } \Theta \\ 1-\frac{s_2(1-s_1)}{1-s_1s_2} & \text{if } C \text{ contains c} (B) \text{ but not its proper superset in } \Theta \\ 1-\frac{s_2(1-s_1)}{1-s_1s_2} & \text{if } C \text{ contains c} (B) \text{ but not its proper superset in } \Theta \\ 1-\frac{s_1(1-s_2)}{1-s_1s_2} & \text{if } C \text{ contains c} (B) \text{ but not its proper superset in } \Theta \\ 1-\frac{s_1(1-s_2)}{1-s_1s_2} & \text{if } C \text{ contains c} (B) \text{ but not its proper superset in } \Theta \\ 1-\frac{s_1(1-s_2)}{1-s_1s_2} & \text{if } C \text{ contains c} (B) \text{ but not its proper superset in } \Theta \\ 1-\frac{s_1(1-s_1)}{1-s_1s_2} & \text{if } C \text{ contains c} (B) \text{ but not its proper superset in } \Theta \\ 1-\frac{s_1(1-s_1)}{1-s_1s_2} & \text{if } C \text{ contains c} (B) \text{ but not its proper superset in } \Theta \\ 1-\frac{s_1(1-s_1)}{1-s_1s_2} & \text{if } C \text{ contains c} (B) \text{ contains c} (B) \text{ contains } C \text{ contains } C \text{ contains } C \text{ contains$$

for all $C \subset \Theta$.

Proof: Here, we consider sets from super power set of Θ . While applying Dempster's rule of combination in 2D, we eliminate lower-left rectangle (see the figure of conflicting evidences in 2D) and increase the measures of remaining rectangles by multiplying

factor $\frac{1}{1-s_1s_2}$. For calculating basic probability numbers by multiplying basic probability numbers except for set $A \cap B$ by

quantity $\frac{1}{1-s_1s_2}$. We apply procedure similar to conflicting evidences in 2D for calculating S(C).

4.2 Generalizations of Above Results to *k* Dimensions

In hyper power set, the number of cases for heterogeneous evidences, follows the sequence of Dedekind numbers with addition of 1 viz. 2,6,20,168,7581,7828354,.... For $k \ge 4$, it becomes difficult to enumerate all cases. In super power set, the number of cases for heterogeneous evidences, follows the sequence $2^{2^{n-1}} + n$ viz. 1,3,10,131,32772,.... For $k \ge 3$, it becomes difficult to enumerate all cases.

In each case, subset of Θ whose support function to be calculated, is union and intersection of subsets of Θ in some prescribed Whenever operation performed, use order. union is we rule For any subsets : $A, B \subseteq \Theta$, $S(A \cup B) = S(A) + S(B) - S(A \cap B)$, since support function S is a belief function. Whenever operation intersection is performed, we use rule : For any subsets $A, B \subseteq \Theta$, $S(A \cap B) = S(A)S(B)$. Using these two rules in prescribed order in required subset of Θ , we obtain support function of every subset of Θ .

5 Simple Support Function Based on
$$s = \frac{p(A)}{2^{n-1}}$$

By using basic belief assignment from [6], $m = \frac{p(A)}{2^{n-1}}$ as degree of support, we have a advantage as : For any subset A of Θ , $m(A) \le m(\Theta)$ and a disadvantage as : Values involved in calculations are very small as compared to degree of support s which is based on probability from probability distributions. The advantage is more appealing than disadvantage.

6 Illustrative Example

From [1, 7], suppose that one body of evidence focused on subset A_1 of $\Theta = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ with degrees of support s_1 follows binomial distribution

$$p(x) = \binom{n}{x} p^{x} q^{1-x}, \quad x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10$$

with
$$p = 0.7, 1 = 1 - p = 0.3$$
 and $n = 10$

Therefore.

$$p(0) = 0.0000059049, \quad p(1) = 0.000137781,$$

$$p(2) = 0.0014467005, \quad p(3) = 0.009001692,$$

$$p(4) = 0.036756909, \quad p(5) = 0.1029193452,$$

$$p(6) = 0.200120949, \quad p(7) = 0.266827932,$$

$$p(8) = 0.2334744405, \quad p(9) = 0.121060821,$$

$$p(10) = 0.0282475249$$
(15)

Here $\sum_{x=0}^{10} p(x) = 1$.

Suppose that one body of evidence focused on subset A_2 of $\Theta = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ with degrees of support s_2 follows Poison distribution

$$p(x) = \frac{e^{\lambda} \lambda^{x}}{x!}, \quad x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10$$

with
$$\lambda = 2$$
, and $n = 10$

Therefore,

$$p(0) = 0.135335283236612, \qquad p(1) = 0.270670566473225, p(2) = 0.270670566473225, \qquad p(3) = 0.180447044315483, p(4) = 0.090223522157741, \qquad p(5) = 0.036089408863096, p(6) = 0.12029802954365, \qquad p(7) = 0.003437086558390, \qquad (16) p(8) = 0.000859271639597, \qquad p(9) = 0.000190949253243, p(10) = 0.000038189850648779$$

Here $\sum_{x=0}^{10} p(x) = 0.999991691775625 \approx 1.$

From [1, 7], suppose that one body of evidence focused on subset A_3 of $\Theta = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ with degrees of support s_3 follows discrete uniform distribution

$$p(x) = \frac{1}{n+1}, \quad x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. \qquad n = 10$$
$$p(x) = \frac{1}{11} = 0.0909090909090909$$

Here $\sum_{x=0}^{10} p(x) = 0.9999999999999999 \approx 1.$

6.1 Heterogeneous Evidences for 3D in Hyper Power Set

Suppose $A_1 \cap A_2 \cap A_3 \neq \emptyset$. Let S_j , j = 1,2,3 be a simple support function focused on A_j with $S_j(A) = s_j(A)$. We combine S_1, S_2 and S_3 . By Dempster's rule, $A_1 \cap A_2 \cap A_3$ is supported by the quantity $s_1(A_1)s_2(A_2)s_3(A_3)$. From [1, ?], suppose that first body of evidence focused on A_1 with degree of support s_1 is probability obtained from binomial distribution *Binomial*(10,0.7), second body of evidence focused on A_2 with degree of support s_2 is probability obtained from Poison distribution. Here $A_1 = \{1,2,3,5,6,8,9\}$, $A_2 = \{0,1,3,6,8,10\}$, $A_3 = \{0,2,3,5,7,8\}$. Therefore $A_1 \cap A_2 = \{1,3,6,8\}$, $A_1 \cap A_3 = \{2,3,5,8\}$, $A_2 \cap A_3 = \{0,3,8\}$, and $A_1 \cap A_2 \cap A_3 = \{3,8\}$.

$$\begin{split} m(A_1 \cap A_2 \cap A_3) &= s_1(A_1)s_2(A_2)s_3(A_3) = 0.21844520\,8980782, \\ m(A_1 \cap A_2) &= s_1(A_1)s_2(A_2)(1-s_3(A_3)) = 0.18203767\,4150655, \\ m(A_1 \cap A_3) &= s_1(A_1)s_3(A_3)(1-s_2(A_2)) = 0.14600666\,4331012, \\ m(A_2 \cap A_3) &= s_2(A_2)s_3(A_3)(1-s_1(A_1)) = 0.10848942\,2911903, \\ m(A_1) &= s_1(A_1)(1-s_2(A_2))(1-s_3(A_3)) = 0.12142717\,70566773, \\ m(A_2) &= s_2(A_2)(1-s_1(A_1))(1-s_3(A_3)) = 0.90407852\,426588, \\ m(A_3) &= s_3(A_3)(1-s_1(A_1))(1-s_2(A_2)) = 0.07251327\,0251731, \end{split}$$

$$m(\Theta) = (1 - s_1(A_1))(1 - s_2(A_2))(1 - s_3(A_3)) = 0.06042772520977$$

and
$$m(B) = 0$$
 if B is none of the above mentioned subsets of Θ .

We consider sets which are intersection of any sets among A_1, A_2 , and A_3 . For value of S(C), we consider proper super set C of subset of Θ , which does not contain its proper super set of subset of Θ under consideration. Therefore, by equation (8), orthogonal sum $S = S_1 \oplus S_2 \oplus S_3$ is

	(0	if C does not contain $A_1 \cap A_2 \cap A_3$	
	0.21844520 8980782	if C contains $A_1 \cap A_2 \cap A_3$ but neither	
		$A_1 \cap A_2$ nor $A_1 \cap A_3$ nor $A_2 \cap A_3$	
	0.400482883131438	if C contains $A_1 \cap A_2$ but neither	
		$A_1 \cap A_3$ nor $A_2 \cap A_3$	
	0.364451852290905	if C contains $A_1 \cap A_3$ butneither	
		$A_1 \cap A_2$ nor $A_2 \cap A_3$	
	0.32693463 1892685	if C contains $A_2 \cap A_3$ but neither	
		$A_1 \cap A_2$ nor $A_1 \cap A_3$	
	0.546489526441561	if C contains $A_1 \cap A_2$ and	
		$A_1 \cap A_3$ but not $A_2 \cap A_3$	
	0.508972306043341	if C contains $A_1 \cap A_2$ and	
		$A_2 \cap A_3$ but not $A_1 \cap A_3$	
	0.47294127 5202808	if C contains $A_1 \cap A_3$ and	
		$A_2 \cap A_3$ but not $A_1 \cap A_2$	
S(C) = -	0.65497894 9353464	if C contains $A_1 \cap A_2$, $A_1 \cap A_3$ and	
		$A_2 \cap A_3$ but not their proper superset in Θ	
	0.6681617292	if C contains A_1 but neither A_2 nor A_3	
	0.59938015 846993	if C contains A_2 but neither A_1 nor A_3	
	0.54545454 545454	if C contains A_3 but neither A_2 nor A_3	
	0.727492219605195	if C contains $(A_1 \cap A_2) \cup A_3$	
		but not its proper superset in Θ	
	0.745386801780052	if C contains $(A_1 \cap A_3) \cup A_2$	
		but not its proper superset in Θ	
	0.776651152111903	if C contains $(A_2 \cap A_3) \cup A_1$	
		but not its proper superset in Θ	
	0.867059004538492	if C contains A_1 and A_2 but not A_3	
	0.849164422363635	if C contains A_1 and A_3 but not A_2	
	0.81790007 0734543	if C contains A_2 and A_3 but no tA_1	
	0.93957227 4790222	if C contains A_1, A_2 and A_3 but $C \neq \Theta$	(17)
0	[1	if $C = \Theta$	
- (A)			

for all $C \subseteq \Theta$.

6.2 Conflicting Evidences for 3D in Hyper Power Set

6.2.1 Evidences are pairwise disjoint

Suppose $A_i \cap A_j = \emptyset$ i, j = 1,2,3 and $i \neq j$. From [1, 7], suppose that first body of evidence focused on A_1 with degree of support s_1 is probability obtained from binomial distribution *Binomial*(10,0.7), second body of evidence focused on A_2 with degree of support s_2 is probability obtained from Poison distribution *Poison*(2) and third body of evidence focused on A_3 with degree of support s_3 is probability obtained from discrete uniform distribution. By figure of conflicting evidences for three dimensions, the parallelopipeds corresponding to $A_1 \cap A_2, A_1 \cap A_3, A_2 \cap A_3$ and $A_1 \cap A_2 \cap A_3$ are related to \emptyset . For

July 2023 IJSDR | Volume 8 Issue 7

application of Dempster's rule, we must eliminate corresponding parallelopipeds. Therefore decrease the measures of the remaining parallelopipeds quantity reciprocal of $1 - s_1(A_1)s_2(A_2)s_3(A_3) - s_1(A_1)s_2(A_2)(1 - s_3(A_3)) - s_1(A_1)s_3(A_3)(1 - s_2(A_2)) - s_2(A_2)s_3(A_3)(1 - s_1(A_1))$ Here $A_1 = \{1, 2, 3, 8, 9\}, A_2 = \{0, 6, 10\}$ and $A_3 = \{4, 5, 7\}$. Therefore $A_1 \cap A_2 = \emptyset, A_1 \cap A_3 = \emptyset, A_2 \cap A_3 = \emptyset$, and $A_1 \cap A_2 \cap A_3 = \emptyset$. The *orthogonal sum* S of S_1, S_2 and S_3 , have basic probability numbers $m(A_1) = s_1(A_1)(1 - s_2(A_2))(1 - s_3(A_3))/K = 0.2708921543877144,$ $m(A_2) = s_2(A_2)(1 - s_1(A_1))(1 - s_3(A_3))/K = 0.08149540\,0822394,$ $m(A_3) = s_3(A_3)(1 - s_1(A_1))(1 - s_2(A_2))/K = 0.176629059350823,$ $m(\Theta) = (1 - s_1(A_1))(1 - s_2(A_2))(1 - s_3(A_3))/K = 0.471031294689857,$ and m(B) = 0 if B is none of the above mentioned subsets of Θ . $K = 1 - s_1(A_1)s_2(A_2)s_3(A_3) - s_1(A_1)s_2(A_2)(1 - s_3(A_3)) - s_1(A_1)s_3(A_3)(1 - s_2(A_2)) - s_2(A_2)s_3(A_3)(1 - s_1(A_1))$ Also. where

$$= 0.8357605$$

sum of basic probability numbers corresponding to all parallelopipeds is one.

By using equation (9), the orthogonal sum $S = S_1 \oplus S_2 \oplus S_3$ is a separable support function and is given by

	0	If C contains neither $A_1 \text{ nor } A_2 \text{ nor} A_3$	
	0.2708921543877144	If C contains A_1 but neither A_2 nor A_3 .	
	0.081495400822394	If C contains A_2 but neither A_1 nor A_3 .	
	0.17662905 9350823	If C contains A_3 but neither A_1 nor A_2 .	
$S(C) = \langle$	0.35232755 5209538	If C contains A_1 and A_2 but not A_3 .	(18)
	0.44752121 3737967	If C contains A_1 and A_3 but not A_2 .	
	0.25806446 0173217	If C contains A_2 and A_3 but not A_1 .	
	0.528956614560361	If C ontains A_1, A_2 and A_3 but $C \neq \Theta$.	
	1	If $C = \Theta$.	

for all $C \subseteq \Theta$.

6.2.2 Intersection of all Evidences is \varnothing

Suppose $A_i \cap A_j = \emptyset$ i, j = 1,2,3 and $i \neq j$. From [1, 7], suppose that first body of evidence focused on A_1 with degree of support s_1 is probability obtained from binomial distribution *Binomial*(10,0.7), second body of evidence focused on A_2 with degree of support s_2 is probability obtained from Poison distribution *Poison*(2) and third body of evidence focused on A_3 with degree of support s_3 is probability obtained from discrete uniform distribution. Here

 $A_1 = \{1, 2, 3, 5, 6, 9\}, A_2 = \{0, 1, 6, 8, 10\}$ and $A_3 = \{0, 2, 3, 5, 7, 8\}$. Therefore

 $A_1 \cap A_2 = \{1,6\}, A_1 \cap A_3 = \{2,3,5\}, A_2 \cap A_3 = \{0,8\}$ and $A_1 \cap A_2 \cap A_3 = \emptyset$. By figure of conflicting evidence for three dimensions, the parallelopiped is related to $A_1 \cap A_2 \cap A_3 = \emptyset$. For application of Dempster's rule, we eliminate corresponding parallelopiped. Therefore decrease the measures of the remaining parallelopipeds by quantity

 $\frac{1}{1 - s_1(A_1)s_2(A_2)s_3(A_3)}$. The orthogonal sum $S = S_1 \oplus S_2 \oplus S_3$ have basic probability numbers

$$\begin{split} m(A_1 \cap A_2) &= s_1(A_1)s_2(A_2)(1-s_3(A_3))/K = 0.09190374\,8653322, \\ m(A_1 \cap A_3) &= s_1(A_1)s_3(A_3)(1-s_2(A_2))/K = 0.15296635\,1591380, \\ m(A_2 \cap A_3) &= s_2(A_2)s_3(A_3)(1-s_1(A_1))/K = 0.14342547\,0255328, \\ m(A_1) &= s_1(A_1)(1-s_2(A_2))(1-s_3(A_3))/K = 0.12747195\,9668042, \\ m(A_2) &= s_2(A_2)(1-s_1(A_1))(1-s_3(A_3))/K = 0.11952122\,5212776, \\ m(A_3) &= s_3(A_3)(1-s_1(A_1))(1-s_2(A_2))/K = 0.19893340\,6160566, \\ m(\Theta) &= (1-s_1(A_1))(1-s_2(A_2))(1-s_3(A_3))/K = 0.16577783\,8467142, \\ m(B) &= 0 \text{ if } \text{B is none of the above mentioned subsets of } \Theta. \end{split}$$

where $K = 1 - s_1(A_1)s_2(A_2)s_3(A_3) = 0.90067005479721$.

and

Also, sum of basic probability numbers corresponding to all parallelopipeds is one.

By using equation (10), the orthogonal sum	$S = S_1 \oplus S_2 \oplus S_3$ is a separable support function and is given by
$\begin{bmatrix} 0 \end{bmatrix}$	If C contains neither $A \cap A$ nor $A \cap A$

		If C contains neither $A_1 \cap A_2$ nor $A_1 \cap A_3$	
		nor $A_2 \cap A_3$	
	0.091903748653322	if C contains $A_1 \cap A_2$ but neither	
		$A_1 \cap A_3$ nor $A_2 \cap A_3$	
	0.152966351591380	if C contains $A_1 \cap A_3$ but neither	
		$A_1 \cap A_2$ nor $A_2 \cap A_3$	
	0.14342547 0255328	if C contains $A_2 \cap A_3$ but neither	
		$A_1 \cap A_2$ nor $A_1 \cap A_3$	
	0.244870100244702	if C contains $A_1 \cap A_2$ and	
		$A_1 \cap A_3$ but not $A_2 \cap A_3$	
	0.23532921 8908650	if C contains $A_1 \cap A_2$ and	
		$A_2 \cap A_3$ but not $A_1 \cap A_3$	
	0.296391821846708	if C contains $A_1 \cap A_3$ and	
		$A_2 \cap A_3$ but not $A_1 \cap A_2$	
$S(\mathbf{C}) =$	0388295570 50003	if C contains $A_1 \cap A_2$, $A_1 \cap A_3$ and	
S(C) =		$A_2 \cap A_3$ but not their proper superset in Θ	
	0.372342059904191	if C contains A_1 but neither A_2 nor A_3	
	0.35485044412428	if C contains A_2 but neither A_1 nor A_3	
	0.495325228007276	if C contains A_3 but neither A_2 nor A_3	
	0.5872228976660599	if C contains $(A_1 \cap A_2) \cup A_3$	
		but not its proper superset in Θ	
	0.507816795712808	if C contains $(A_1 \cap A_3) \cup A_2$	
		but not its proper superset in Θ	
	0.515767530159519	if C contains $(A_2 \cap A_3) \cup A_1$	
		but not its proper superset in Θ	
	0.635288755372295	if C contains A_1 and A_2 but not A_3	
	0.714700936320086	if C contains A_1 and A_3 but not A_2	
	0.706750201873376	if C contains A_2 and A_3 but not A_1	
	0.834222161532863	if C contains A_1 , A_2 and A_3 but $C \neq \Theta$	
	[1	if $C = \Theta$	(19)

for all $C \subseteq \Theta$.

6.3 Mixing of Above Two Cases

In this case, any two evidences may be heterogeneous or conflicting. If given two evidences are heterogeneous then their intersection is not related to \emptyset . If given two evidences are conflicting then their intersection is related to \emptyset . Such combinations of evidences should be done for all possible pairs of given evidences. The effect of conflicting evidences is taken into account while calculating the value of K as in above cases. Also eliminate cases in S(C) whose intersection is related to \emptyset . As Dempster's rule of combination is associative and commutative hence Bernaulli's rule of combination, the order of combination of support functions is not important.

Suppose $A_1 \cap A_2 \cap A_3 = \emptyset$ and $A_2 \cap A_3 = \emptyset$. From [1, 7], suppose that first body of evidence focused on A_1 with degree of support s_1 is probability obtained from binomial distribution Binomial(10,0.7), second body of evidence focused on A_2 with degree of support s_2 is probability obtained from Poison distribution Poison(2) and third body of evidence focused on A_3 with degree of support s_3 is probability obtained from discrete uniform distribution. By figure of conflicting evidence for three dimensions, WOLOG, assume that the parallelopiped is related to $A_2 \cap A_3 = \emptyset$ hence $A_1 \cap A_2 \cap A_3 = \emptyset$. For application of Dempster's rule, we eliminate corresponding parallelopiped. Therefore decrease the measures of the remaining parallelopipeds by quantity $\frac{1}{1-s_2(A_2)s_3(A_3)}$. Here we need at least one pair of subsets of Θ among the subsets A_1, A_2 and

 A_3 of Θ , is disjoint.

Here $A_1 = \{1,2,3,5,6,8,9\}, A_2 = \{0,1,3,6,10\}$ and $A_3 = \{2,5,7,9\}.$ Therefore $A_1 \cap A_2 = \{1,3,6\}, A_1 \cap A_3 = \{2,5\}, A_2 \cap A_3 = \emptyset,$ and $A_1 \cap A_2 \cap A_3 = \emptyset$. The orthogonal sum $S = S_1 \oplus S_2 \oplus S_3$ have basic probability numbers $m(A_1 \cap A_2) = s_1(A_1)s_2(A_2)(1 - s_3(A_3))/K = 0.32528334\,0866,$ $m(A_1 \cap A_3) = s_1(A_1)s_3(A_3)(1 - s_2(A_2))/K = 0.12468305\,0302971,$ $m(A_1) = s_1(A_1)(1 - s_2(A_2))(1 - s_3(A_3))/K = 0.21819533\,8030203,$ $m(A_2) = s_2(A_2)(1 - s_1(A_1))(1 - s_3(A_3))/K = 0.16154990\,1223068,$ $m(A_3) = s_3(A_3)(1 - s_1(A_1))(1 - s_2(A_2))/K = 0.10836532\,6094412,$ and m(B) = 0 if B is none of the above mentioned subsets of Θ , where $K = 1 - s_2(A_2)s_3(A_3) = 0.78235604\,1152609$. Also, sum of basic probability numbers corresponding to all parallelopipeds is one.

By using equation (11), the orthogonal sum $S = S_1 \oplus S_2 \oplus S_3$ is a separable support function and is given by

	0	If C contains neither $A_1 \cap A_2$ nor $A_1 \cap A_3$	
	0.325283340866825	if C contains $A_1 \cap A_2$ but not	
		$A_1 \cap A_3$	
	0.12468305 0302971	if C contains $A_1 \cap A_3$ but not	
		$A_1 \cap A_2$	
	0.449966391169796	if C contains $A_1 \cap A_2$ and	
		$A_1 \cap A_3$ but not its proper subset in Θ	
	0.668161729200001	if C contains A_1 but neither A_2 nor A_3	
	0.486833242089893	if C contains A_2 but neither A_1 nor A_3	
$S(C) = \langle$	0.18660609 3785492	if C contains A_3 but neither A_2 nor A_3	
	0.511889434652318	if C contains $(A_1 \cap A_2) \cup A_3$	
		but not its proper superset in Θ	
	0.611516292392866	if C contains $(A_1 \cap A_3) \cup A_2$	
		but not its proper superset in Θ	
	0.82971163 0423069	if C contains A_1 and A_2 bu that A_3	
	0.73008477 2682521	if C contains A_1 and A_3 but not A_2	
	0.67343933 5875385	if C contains A_2 and A_3 but not A_1	(20)
	0.86148847 7886919	if C contains A_1, A_2 and A_3 but $C \neq \Theta$	
	1	if $C = \Theta$	

for all $\ C \subseteq \Theta$.

6.4 Combination of Evidences in 2D in Super Power Set

6.4.1 Heterogeneous Evidences in 2D in Super Power Set

Suppose $A \cap B \neq \emptyset$. From [1, 7], let S_1 be a simple support function focused on A_1 with $S_1(A) = s_1$ following binomial distribution Binomial(10,0.7). Let S_2 be another simple support function focused on B with $S_2(B) = s_2$ following Poison distribution Poison(2). Here $A = \{1,2,3,5,6,8,9\}$ and $B = \{0,1,3,6,8,10\}$. Therefore $A \cap B = \{1,3,6,8\}$. Here $s_1 = p(A) = 0.668117292$ and $s_2 - p(B) = 0.59938015846993$. The orthogonal sum $S = S_1 \oplus S_2$ focused on $A \cup B$, have basic probability numbers $m(A \cap B) = s_1s_2 = 0.400482883131438$, $m(A) = s_1(1 - s_2) = 0.267878846068561$, $m(B) = s_2(1 - s_1)(1 - s_2) = 0.132940995461508$. Therefore by using equation (12),

0.400482883131438 if C contains A \cap B but neither A nor B 0.668117292 if C contains A but not B	
0.59938015 846993 if C contains B bu tnot A	
$S(C) = \begin{cases} 0.86705900453849 & \text{if } C \text{ contains both A and B and } C \neq \Theta \end{cases}$	
$S(C) = \begin{cases} 0.132940995461508 & \text{if } C \text{ contains } c(A \cup B) \text{ but not its proper superset in } \Theta \end{cases} $ (21)	
0.3318382708 if C contains $c(A)$ but not its proper superset in Θ	
0.400619841530070 if C contains $c(B)$ but not its proper superset in Θ	
0.59951711 686856 if C contains $c(A \cap B)$ but not its proper superset in Θ	
1	

for all $C \subset \Theta$.

6.4.2 Conflicting Evidences in 2D in Super Power Set

If $A \cap B = \emptyset$ then the combination of evidences pointing to A and evidences pointing to B is simple as compared to $A \cap B = \neq \emptyset$ i.e. the bodies of evidence are conflicting and effect of one body of evidence decreases the effect of other body of evidence. While applying Dempster's rule of combination, we eliminate lower-left rectangle (see the figure of conflicting evidences

) and increase the measures of remaining rectangles by multiplying factor $\frac{1}{1-s_1s_2}$. From [1, 7], let S_1 be a simple support

function focused on A with $S_1(A) = s_1$ which follows binomial distribution Binomial(10,0.7). Let S_2 be a simple support function focused on B with $S_2(B) = s_2$ which follows poison distribution Poison(2). Here $A = \{1,2,3,5,6,8,9\}$ and $B = \{0,3,7,10\}$ hence $A \cap B = \emptyset$ $s_1 = pA$ = 0.6681617292 and $s_2 = p(B) = 0..31925760391133$. The **orthogonal sum** $S = S_1 \oplus S_2$ focused on $A \cup B$ have basic probability numbers:

$$m(C) = \begin{cases} 0 & \text{if } C = \emptyset \\ \frac{s_1(1-s_2)}{1-s_1s_2} = 0.5781138015427 & \text{if } C = A \\ \frac{s_2(1-s_1)}{1-s_1s_2} = 0.134668879182659 & \text{if } C = B \\ \frac{(1-s_1)(1-s_2)}{1-s_1s_2} = 0.287149982801223 & \text{if } C = \Theta. \end{cases}$$
(22)

By using equation (13), the orthogonal sum S of simple support functions S_1 and S_2 focused on $A \cup B$, is given by

$$S(C) = \begin{cases} 0 & \text{if } C \text{ contains neither A nor B} \\ 0.5781138015427 & \text{if } C \text{ contains A but not B} \\ 0.134668879182659 & \text{if } C \text{ contains B but not A} \\ 0.712850017198086 & \text{if } C \text{ contains both A and B and C \neq \Theta} \\ 0.28714998280191 & \text{if } C \text{ contains c}(A \cup B) \text{ but not its proper superset in } \Theta \\ 0.421818861984573 & \text{if } C \text{ contains c}(A) \text{ but not its proper superset in } \Theta \\ 0.86533112081734 & \text{if } C \text{ contains c}(B) \text{ but not its proper superset in } \Theta \\ 1 & \text{if } C = \Theta \end{cases}$$

$$(23)$$

for all $C \subset \Theta$.

7 CONCLUSION

Usually it is beneficial to directly point out subset A_i of Θ which is concerned to our interest. Such set is always assigned basic

belief assignment $m_i(A_i)$ greater than 0.5 and $m_i(\Theta) = 1 - m_i(A_i)$, by choosing appropriate probability distribution. In this paper, we have obtained support functions for heterogeneous and conflicting evidences in hyper power set and super power set. These are illustrated by an example, considering simple and commonly used probability distributions viz. discrete uniform distribution, Binomial distribution and Poison Distribution.

REFERENCES:

- 1. Bansi Lal and Arora Sanjay, "Mathematical Statistics," Satya Prakashan, New Delhi, September 1989.
- 2. Billingsley Patrick, "Probability and Measures," *Wiley India Pvt. Ltd*, third edition, 2008.
- 3. Dezart J. and Smarandache, "Applications and Advances of DSmt for Information Fussion (Collected works)," *American Research Press, Reheboth*, Vol. 3, 2006.
- 4. Gawn J. W. and Bell D. A., "Evidence Theory and its Applications," *Studies in Computer Science and Artificial Intelligence* 7, Vol. 1, first edition, 1991.
- 5. Kandekar D. N.," A Discussion on Simple Support Functions," *A Bulletin of Society for Mathematical Sciences & Standards*, Vol. 3, No. 2, pp. 29-40, I. F. =3.406, ISSN 2277-8022, 2014.
- 6. Kandekar D. N., " New Belief Function Induced by Probability Function," *International Journal of Multidisciplinary Research and Advances in Engineering (IJPEM)*, Vol. 5, Issue 3, pp. 1-24, ISSN 0975-7074, 2017.
- 7. Kendall M. and Stuart, "Advanced Theory of Statistics," Charles Griffin and Co. Ltd, London, fourth edition, Vol. 2, 1979.
- 8. Shafer Glenn, " A Mathematical Theory of Evidence", *Princeton University Press*, NJ, 1976.