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Abstract— The derivation of numerical methods to deal with real life problems framed into differential equations has been 

on the increase of which good attention is directed to Runge-Kutta methods. Recently, researchers have explored the 

derivation of Runge-Kutta methods by introducing higher order derivative 𝐟′ (up to the second order) in the Runge-Kutta 

𝐤𝐢 terms (𝐢 > 𝟏) in order to increase the order of accuracy of the solution to the differential equation. However, this paper 

presents some new higher order derivative Runge-Kutta methods by using other types of ‘mean’ such as harmonic mean, 

geometric mean or harmonic mean as against the conventional Arithmetic mean viewed higher order derivative Runge-

Kutta methods. The qualitative features such as the local truncation error, consistency, convergence and stability of the new 

methods are investigated and established. Numerical examples are used to compare the accuracies of these methods. The 

results show better performance of some of the derived methods when compared with existing methods. 

 

Index Terms—Multiderivative, Harmonic Mean, Geometric Mean, Heronian Mean, Differential Equations  

 

I. INTRODUCTION  

In biological sciences, physical sciences and engineering, mathematical models are composed to assist in the interpretation of 

physical phenomena. These composed models oftentimes result to equations which contain the derivatives of an unknown function. 

In applications, the function usually represent physical quantities and the derivatives represent their rates of change. These equations 

are called differential equations. Ordinary differential Equations (𝑂𝐷𝐸𝑠) arise on many occasions when using mathematical 

modelling techniques to describe these physical phenomena. The general form of an initial value problems (𝐼𝑉𝑃𝑠) in 𝑂𝐷𝐸 is of the 

form: 

                                           𝑦′ = 𝑓(𝑥, 𝑦),   𝑦(𝑥0) = 𝜂                                     (1)                                                                                                

 

where 𝑥 ∈ ℝ, 𝑦, 𝜂 ∈ ℝ𝑛 and 𝑓: ℝ × ℝ𝑛 → ℝ𝑛. The development of numerical methods for the solution of 𝑂𝐷𝐸𝑠 have turned out to 

be a very rapid research area in recent decades because of the difficulties encountered in finding analytical solutions to some 

mathematical models composed into differential equations from real life situations of which good attention is directed to Runge-

Kutta methods. 

     In recent times, so much work have been done by researchers to improve the Runge Kutta methods for solving O.D.E. Several 

methods have been developed using the idea of different types of mean such as the geometric mean, heronian mean, centroidal mean, 

contra-harmonic mean and harmonic mean. Akanbi M.A. [4] proposed a 3-stage geometric explicit Runge-Kutta methods for singular 

autonomous initial value problems in ordinary differential equations where geometric mean was incorporated in the classical 3-stage 

Runge-Kutta methods. A third order harmonic mean for autonomous initial value problem was constructed by Wusu A.S., Okunuga 

S.A. and Shofoluwe A.B. [18]. The method was derived based on harmonic mean and was confirmed to be better than any third order 

of any form of explicit Runge-Kutta methods. This idea was extended to fourth order in Wusu A.S., Akanbi M.A. and Bakre F.O. 

[17]. Olaniyan A.S. et al. [15] constructed a new Implicit Runge-Kutta method in which heronian mean was used as a basis in the 

derivation. The paper was found to perform better than the classical 2-Stage Implicit Runge-Kutta methods. 

    In an earlier research work of Goeken D. and Johnson O.[10], a 2-stage explicit Runge-Kutta method of order 3 was developed for 

autonomous Initial Value Problems with the notion of incorporating first derivative in the internal stages of Runge-Kutta method. 

This method was later extended to fourth and fifth order methods in Goeken D. and Johnson O. [11]. Akanbi [3] improved on this 

research by deriving multi-derivative explicit Runge-Kutta method involving first and second derivatives which provided better 

results. Wusu et al. [19] then present a new class of three stage Runge-Kutta method with first and second derivatives of which the 

cost of internal stage evaluations is reduced greatly and there is an appreciable improvement on the attainable order of accuracy of 

the method. Several authors such as Vijeyata C. and Pankaj K. [16], Mukaddes O. T. and Turgut O. [13], Bazuaye, F. E. [6], Chan, 

R. P. and Tsai, A. Y. [7], Aiguobasimwin, I.B. and Okuonghae, R.I. [2] and Adeyeye, O. et al. [1] to mention a few have developed 

methods based on higher derivatives Runge-Kutta methods and Runge-Kutta methods with the notion of other types of ‘mean’. 

However, this research is motivated by the need to find a common ground that will harness the strength of these methods to produce 

new methods. By following closely these techniques, some new 3 - stage explicit Runge-Kutta methods are constructed based on 

different types of ‘mean’ such as harmonic mean, geometric mean or heronian mean and higher derivatives up to the second derivative 

in the 𝑘𝑖 terms of Runge-Kutta method on a single explicit Runge-Kutta methods which have previously been done on different 

explicit Runge-Kutta methods in order to achieve a higher order of accuracy on a single Runge-Kutta method that would be an 

improvement on the existing methods; be potent enough to compete favorably in the solution of IVP of O.D.E.; be less expensive in 

terms of the number of functions evaluation per step; be consistent, convergent and stable. 
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II.  DERIVATION OF THE METHODS 

In this research, a combination of other types of ’mean’ such as geometric mean, harmonic mean or heronian mean with higher 

derivatives up to the second derivative in a single Runge-Kutta Methods are derived. The methods can be expressed in a general 

form as follows: 

𝑦𝑛+1 − 𝑦𝑛  = 𝛷(𝑦𝑛; ℎ)                                                                                                                               (2) 

             𝑘1  = ℎ𝑓(𝑦) 

             𝑘2  = ℎ𝑓(𝑦 + ℎ𝑏21𝑘1 + ℎ2𝑏22𝑓𝑓𝑦 + 
ℎ3

2
𝑏23(𝑓𝑓𝑦

2   + 𝑓2𝑓𝑦𝑦))                                             

             𝑘3  = ℎ𝑓(𝑦 + ℎ𝑏31𝑘1 + ℎ𝑏32𝑘2 + ℎ2𝑏33𝑓𝑓𝑦 +
ℎ2

2
𝑏34(𝑓𝑓𝑦

2 + 𝑓2𝑓𝑦𝑦)) 

                       

Where 𝛷(𝑦𝑛; ℎ) will be equivalent to:  

𝛷𝐺𝑀𝐸𝑅𝐾(𝑦𝑛; ℎ) = 𝑐1√𝑘1𝑘2 + 𝑐2√𝑘2𝑘3   ,                                                     (3)

  

                                                              𝛷𝐻𝑎𝑀𝐸𝑅𝐾(𝑦𝑛; ℎ) = 𝑐1
2𝑘1𝑘2

𝑘1+𝑘2
+ 𝑐2

2𝑘2𝑘3

𝑘2+𝑘3
                                                     (4) 

 

 

and 

                                                   𝛷𝐻𝑒𝑀𝐸𝑅𝐾(𝑦𝑛; ℎ) = 𝑐1
𝑘1+2𝑘2+𝑘3+√𝑘1𝑘2+√𝑘2𝑘3

6
                                            (5) 

 

To derive these schemes, the following steps will be adopted: 

• Obtain the Taylor’s series expansion of 𝑘2 and 𝑘3. 

• Insert 𝑘1 and the Taylor’s series expansions of 𝑘2 and 𝑘3 into 𝛷𝐺𝑀𝐸𝑅𝐾(𝑦𝑛; ℎ), 𝛷𝐻𝐴𝑀𝐸𝑅𝐾(𝑦𝑛; ℎ)and 𝛷𝐻𝐸𝑀𝐸𝑅𝐾(𝑦𝑛; ℎ). 
• Compare the results with Taylor’s series expansion of 𝑦𝑛+1 about (𝑥𝑛 , 𝑦𝑛) up to order 𝑂(ℎ4) to obtain three different systems of 

equations which were solved to obtain corresponding parameters. 

These parameters are then substituted into the general forms to obtain the following methods: 

• Geometric-Multiderivative Explicit Runge-Kutta Method (GMERK) 

•  

 𝑦𝑛+1 − 𝑦𝑛=  
2

9
√𝑘1𝑘2 +

7

9
√𝑘2𝑘3 

where 

 𝑘1  = ℎ𝑓(𝑦) 

 𝑘2  = ℎ𝑓 (𝑦 + ℎ𝑘1 −
5

8
(𝑓𝑓𝑦

2 + 𝑓2𝑓𝑦𝑦)) 

 𝑘3  = ℎ𝑓 (𝑦 +
1

3
ℎ𝑘1 −

2

3
ℎ2𝑓𝑓𝑦 +

3

10
ℎ3(𝑓𝑓𝑦

2 + 𝑓2𝑓𝑦𝑦)) 

 

• Harmonic-Multiderivative Explicit Runge-Kutta Method (HaMERK) 

•  

 𝑦𝑛+1 − 𝑦𝑛=  
𝑘1𝑘2

3(𝑘1+𝑘2)
+

2𝑘2𝑘3

3(𝑘2+𝑘3)
 

where 

 𝑘1  = ℎ𝑓(𝑦) 

 𝑘2  = ℎ𝑓 (𝑦 + ℎ𝑘1 +
1

2
ℎ2𝑓𝑓𝑦 +

5

2
(𝑓𝑓𝑦

2 + 𝑓2𝑓𝑦𝑦)) 

 𝑘3  = ℎ𝑓 (𝑦 +
1

3
ℎ𝑘1 −

2

3
ℎ2𝑓𝑓𝑦 +

8

3
ℎ3(𝑓𝑓𝑦

2 + 𝑓2𝑓𝑦𝑦)) 

• Heronian-Multiderivative Explicit Runge-Kutta Method (HeMERK) 

•  

 𝑦𝑛+1 − 𝑦𝑛=  
𝑘1+2𝑘2+𝑘3+√𝑘1𝑘2+√𝑘2𝑘3

6
 

where 

𝑘1  = ℎ𝑓(𝑦) 

 𝑘2  = ℎ𝑓 (𝑦 + ℎ𝑘1 +
2

5
ℎ2𝑓𝑓𝑦 +

3

10
(𝑓𝑓𝑦

2 + 𝑓2𝑓𝑦𝑦)) 

 𝑘3  = ℎ𝑓 (𝑦 +
5

6
ℎ𝑘1 −

5

3
ℎ2𝑓𝑓𝑦 +

11

6
ℎ3(𝑓𝑓𝑦

2 + 𝑓2𝑓𝑦𝑦)) 

 

III.  QUALITATIVE FEATURES 

We will consider some basic features which are very vital to the development of the constructed schemes. These features are local 

truncation error, consistency, stability and convergence. 
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3.1 Local Truncation Error 

Definition 3.1 (Lambert [12])  

The local truncation error 𝑇𝑛+1 at 𝑥𝑛+1 of the general one step method is given as 

 

𝑇𝑛+1 = 𝑦(𝑥𝑛+1) − 𝑦(𝑥𝑛) − ℎ𝜙(𝑥𝑛 , 𝑦(𝑥𝑛), ℎ) 

where 𝑦(𝑥𝑛) is the theoretical solution. 

The local truncation error of the constructed schemes in compliance with the above definition can be expressed as 

𝑇𝑛+1 = 𝑦(𝑥𝑛+1) − 𝑦𝑛+1 

Definition 3.2 (Lambert [12])  

A numerical method is said to be of order 𝑝 if 𝑝 is the largest integer for which 𝑇𝑛+1 = 𝑂(ℎ𝑝+1) for every 𝑛 and 𝑝 ≥ 1. 

Consequently, the local truncation error of the methods constructed in this research work are as follows: 

 

 

• 3-Stage GMERK 

 

𝑇𝑛+1 =
ℎ5

480
(2𝑓𝑓𝑦

4 − 5𝑓3𝑓yy
2 + 𝑓2𝑓𝑦

2𝑓yy − 3𝑓3𝑓𝑦𝑓yyy − 4𝑓4𝑓yyyy) 

• 3-Stage HaMERK 

 

𝑇𝑛+1 =
ℎ5

720
(−6𝑓𝑓𝑦

4 − 5𝑓3𝑓yy
2 + 15𝑓2𝑓𝑦

2𝑓yy − 7𝑓3𝑓𝑦𝑓yyy − 2𝑓4𝑓yyyy) 

• 3-Stage HeMERK 

 

𝑇𝑛+1 =
ℎ5

1920
(−3𝑓𝑓𝑦

4 − 5𝑓3𝑓yy
2 + 11𝑓2𝑓𝑦

2𝑓yy − 7𝑓3𝑓𝑦𝑓yyy − 3𝑓4𝑓yyyy) 

Theorem 3.3 (Lambert J. D. (1991))  

Let 𝑓(𝑥, 𝑦) belongs to 𝐶3[𝑎, 𝑏] and let its partial derivatives be bounded and if ∃ 𝐿, 𝑀 some positive constants such that 

|𝑓(𝑥, 𝑦)| < 𝑀,  |
𝛿𝑖+𝑗

𝛿𝑥𝑖𝛿𝑦𝑗
| <

𝐿𝑖+𝑗

𝑀𝑖−𝑗
,   𝑖 + 𝑗 < 𝑀 

 

 

then in terms of error bound by virtue of Lotkin in Lambert [12],  

hence the strict upper bound with respect to 𝑦 for the derived methods are: 

 

|𝐿𝑇𝐸𝐺𝑚| ≤
9

480
ℎ4𝑀𝐿3 + 𝑂(ℎ)5 

|𝐿𝑇𝐸𝐻𝑎| ≤
5

720
ℎ4𝑀𝐿3 + 𝑂(ℎ)5 

|𝐿𝑇𝐸𝐻𝑒| ≤
7

1920
ℎ4𝑀𝐿3 + 𝑂(ℎ)5 

3.2 Consistency 

Definition 3.4 (Lambert [12])  

A numerical method is said to be consistent with an initial value problem if 

 

𝜙(𝑥, 𝑦, 0) ≡ 𝑓(𝑥, 𝑦) 

Thus, a consistent method has at least order one. 

Definition 3.5 (Lambert [12])  

A scheme is said to be consistent if the difference equation of the integrating formula exactly approximates the differential 

equation it intends to solve as the step size approaches zero. 

In order to establish the consistency property of the proposed scheme it is sufficient to show that 

 

lim
ℎ→0

𝜙(𝑥𝑛 , 𝑦𝑛; ℎ) = 𝑓(𝑥𝑛 , 𝑦𝑛) 

where 𝜙(𝑥𝑛 , 𝑦𝑛; ℎ) is the increment function of the numerical scheme. 

The consistency of the derived methods were investigated using the above consistency definitions and were all confirmed 

consistent. 

3.3 Stability of the Derived Methods 

The stability of numerical methods for solving an IVP in ODE can be analyzed using the linear test problem 𝑦′ = 𝜆𝑦 proposed by 

Dalquist [8], where the solution is 𝑦 = 𝑒𝜆𝑦 and 𝜆 a complex variable. The stability polynomials 𝑅(𝑧) =
𝑦𝑛+1

𝑦𝑛
 of the derived methods 

where 𝑧 = 𝜆ℎ are incidentally the same as expressed below: 

𝑅(𝑧) = 1 + 𝑧 +
1

2
𝑧2 +

1

6
𝑧3 +

1

24
𝑧4 
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The absolute stability region is as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Absolute Stability of the Methods 

 

 

3.4 Convergence 

We will test for the convergence of the derived methods using the following definitions and theorem. 

Definition 3.6 (Dahlquist [8]) 

A numerical method is said to be convergent if for all initial value problems satisfying the hypothesis of the Lipschitz condition 

given by 
|𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦∗)| ≤ 𝐿|𝑦 − 𝑦∗| 

 

where the Lipschitz constant 𝐿 is denoted by 𝐿 = max|𝑓𝑦(𝑥, 𝑦)|. 

Definition 3.7 (Dahlquist [8]) 

The necessary and sufficient conditions for a numerical method to be convergent is for it to be consistent and stable. 

Definition 3.8 (Lambert [12])  

A numerical method is said to be convergent if it is consistent and has an order greater than one. 

 

From the theorem and definitions above, we can conclude that the derived methods in the thesis are convergent. 

IV.  NUMERICAL EXPERIMENT 

For the purpose of testing the performance and suitability of the derived schemes, some standard initial value problems are solved 

with the aid of Matlab package. Comparisons are made with some existing methods such as the kutta’s Third Order Method (ERK), 

Goeken’s 3-Stage Method (3GM) and 3-Stage Multiderivative Explicit Runge-Kutta Methods (3MERK) by Wusu et al. (2013) to 

ascertain the level of accuracy of the derived schemes.  

The derived schemes are tested on four initial value problems given below: 

 

4.1 Problem 1: 
Consider the IVP 

 

𝑦′ = −𝑦(𝑥)  𝑦(0) = 1 

whose analytical solution is given as: 

 

𝑦(𝑥) = 𝑒−𝑥 

Comparison of the absolute error obtained is presented in the figure below. 
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Fig. 2.  Absolute Error of Problem 1 using h=0.01 

4.2 Problem 2: 

Consider the IVP 

𝑦′ = 𝑥 + 𝑦(𝑥)  𝑦(0) = 1 

whose analytical solution is given as: 

𝑦(𝑥) = 2𝑒𝑥 − 𝑥 − 1 

Comparison of the absolute error obtained is presented in the figure below. 

                                     

Fig. 3.  Absolute Error of Problem 2 using h=0.01 

4.3 Problem 3: 

Consider the IVP 

𝑦′ = 1 + (𝑦(𝑥))
2

  𝑦(0) = 2 

whose analytical solution is given as: 

𝑦(𝑥) = tan (𝑥 +
𝜋

4
) 

 

Comparison of the absolute error obtained is presented in the figure below. 
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Fig. 4.  Absolute Error of Problem 3 using h=0.01 

4.4 Problem 4: 

Consider the IVP 

𝑦′ = −10(𝑦(𝑥) − 1)2  𝑦(0) = 2 

whose analytical solution is given as: 

𝑦(𝑥) = 1 +
1

1 + 10𝑥
 

Comparison of the absolute error obtained is presented in the figure below. 

                                            

Fig. 5.  Absolute Error of Problem 4 using h=0.01 

V. CONCLUSIONS  

VI. In this paper, our research has been devoted to deriving numerical methods to approximate initial value problems in ordinary 

differential equations. These methods are capable of solving initial value problems arising in various fields of science and 

engineering. The derivations of the methods are followed by their error analysis: local truncation error, consistency, convergence 

and stability wherein they exhibited satisfactory performance. The stability regions of the derived methods revealed that the new 

methods are stable like every other existing numerical methods in the relevant literature. The test problems under consideration 

were solved by the derived methods and some standard methods of the same stage where it is easy to observe from the figures that 

some of the new schemes produced smaller errors. Thus, the new derived methods can reliably be used as a substitute for some of 

the existing 3-stage explicit numerical methods to solve some initial value problems in ordinary differential equations. 
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