Optical Coherence Tomography -A Next Generation Diagnostic Imaging Tool in Periodontics and Oral Implantology

¹Dr. Nasma Ibrahim, ²Dr. M. Navya, ³Dr. C. Srikanth

¹Post graduate student, ²Professor, ³Professor and HOD ¹Department of Periodontology and Oral Implantology, ¹Malla Reddy Institute Of Dental Sciences, Hyderabad, India

Abstract: The conventional model of assessing periodontal disease involves a clinical examination to screen for inflammation-related signs, the presence of supra- and subgingival calculus, and periodontal probing to estimate bone loss. Traditional periodontal probing is prone to errors during its execution and fails to identify periodontal disease in the subclinical stage, despite its low cost, widespread use, and acceptance in the clinical setting. The use of alternative techniques like optical coherence tomography has sparked attention owing to the need for an early diagnosis approach and for monitoring periodontal tissues with improved precision, sensitivity, and noninvasiveness. A novel technique for noninvasively examining the interior tooth and soft tissue microstructure is optical coherence tomography. The discipline of dentistry has discovered the value of optical coherence technology (OCT), which has recently grown in relevance in the fields of medicine and research. In the field of periodontics, it has recently been demonstrated to be effective to assess gingival health, periodontal pocket, and peri implant conditions beforehand, making the treatment less challenging considerably before there is significant damage to the tooth structures. Much research is being done to improve the clinical application of OCT in dental medicine, which is anticipated to be a revolutionary prospective next generation diagnostic imaging tool. This review article focuses on the fundamentals, principles, and several research proving the value of OCT in the domain of Periodontics and implant dentistry.

Index Terms: Optical Coherence Tomography, Non-Ionizing, Periodontal Pocket, Periodontal Probing, Periodontal Disease, Diagnosis, Periodontal Defect, Gingival Tissue, Oral tissue, Optical Imaging, Periodontitis, Periodontal Inflammation.

I. INTRODUCTION

The purpose of periodontal diagnostic methods is to offer the practitioner meaningful information on the type, location, and degree of periodontal disease; this information can be used as a foundation for the planning of treatment and disease monitoring. For locating locations of active disease, making a diagnosis, formulating a treatment plan, quantitatively tracking a patient's response to therapy, and gauging the degree of vulnerability to further disease progression, traditional diagnostic techniques are frequently insufficient.[1]

Early in the 1990s, the revolutionary diagnostic tool optical coherence tomography (OCT) was developed. [2] The use of optical coherence tomography (OCT), a non-invasive imaging technique, is growing in a number of medical specialties, including dentistry. It can deliver micrometric resolution cross-sectional pictures of both hard and soft tissues. OCT images are produced by assessing the intensity and time delay of the reflected or backscattered near-infrared light from the tissue structure using the low coherence interferometry principle. OCT's quick acquisition speed allows it to produce in situ images of tissues that are nearly real-time or video rate. [3]

With an imaging capability of 1-3 mm depth into tissues and resolution that is almost identical to high magnification optical microscopy, OCT allows for the collection of volumetric data (such as epidermal thickness) at a microscopic level. [2]

The generation of tissue slices using optical coherence tomography is non-contact and non-invasive. The introduction of Fourierdomain (FD) methods, which offer a noticeable boost in sensitivity compared to conventional (TD)-OCT, has revolutionised OCT in recent years. Several functional OCT systems, including Doppler OCT, polarisation sensitive OCT, endoscopic OCT, and acoustic OCT, have been described for new biomedical research applications over the past ten years. [2]

Due to portability limitations and its high initial cost, OCT has primarily been employed in dentistry as an experimental tool rather than a diagnostic tool. OCT is a cutting-edge imaging equipment that can help dentists make better diagnoses by delivering non-invasive, real-time, high-resolution images without the use of ionising radiation. [3]

It has been used to quantify biologic width, peri-implant tissues, clinical attachment loss, gingival thickness, and pocket depth in the area of periodontics. This method differs from others in that it can distinguish minute changes in structural anatomy in real time, allowing the doctor to detect disease earlier than with other imaging diagnostics. [4]

II. HISTORY

In 1971, Duguay made the initial suggestion that biological tissues may be imaged using light and optics. In 1989, Fujimoto used OCT to image the retina of the eye. In 1993, Fercher et al. released the first in vivo OCT photographs. OCT was patented in 1994 by Carl Zeiss Meditec, Inc. of Dublin, California. The first commercially available OCT, called OCT 1000, was marketed in 1996 and then OCT 2000 in the year 2000. [5]In 1998, Colston et al. published the first in vitro pictures of dental hard and soft tissues in a pig model. They created a prototype OCT and took pictures of periodontal tissues from three pigs. Otis et al. first suggested OCT 2 imaging for dental uses in 2000. [6] The first in vivo spectral-domain (SD)-OCT images were presented by Wojtkowski et al in 2001. The US Food and Drug Administration (FDA) authorised the clinical use of SD-OCT systems in 2002. [5] The first in vivo

dental images were shown by Feldchtein and colleagues, who also showed how OCT could be used to see the gingiva and hard palate mucosa. [7]

III. PRINCIPLE

The OCT operates on the Michelson's Interferometer principle. The beam splitter separates the light from the source into two equally energy beams, one of which strikes Mirror 1 (the reference arm, which is fixed), and the other beam strikes Mirror 2. (sample arm which is mobile and where we place the sample). After striking the mirrors M1 and M2, these two beams are reflected in the same direction with a minor deviation, combining at the coupler to generate an interference pattern that will be transmitted to the photoelectric device for image generation. The type of interference pattern that is generated—either constructive or destructive interference determines how an image is formed. When the wavelengths of the two reflected beams are similar, constructive interference takes place, leading to the generation of an image, however when the wavelengths differ, destructive interference takes place and no image is created. [4]

IV. WORKING OF OCT

The interference of two partially coherent light beams—the reference beam and the probe beam—emitting from a single source forms the basis of optical tomography. A partially coherent light source, an imaging apparatus, a measurement head, a module of data processing and picture production, as well as a computer control system, are the five fundamental modules that make up the modular OCT device. The axial resolution and depth of the light beam in the device depend on the light source that is being used. The system's main component is the OCT imaging apparatus module. For light waves, biological objects like tissues and organs are the centres because of their non-uniform distribution of refractive indices. The sites at which the refractive index changes can be found by analysing interference signals. These sites are located along the probe beam's propagation direction.

An A-scan is a graph that shows the power density of the reflected wave as a function of the location of the reflective point, which is the wave's source. Sagittal scans of the item are provided by B scans, while images with a constant depth are provided by C scans. A two-dimensional representation of the test object's section is produced by combining measurement results that are all in one plane (many parallel directions of the probe beam).

Interferometric distance measuring devices are used to localise the boundaries of layers with varying refractive indices, or to calculate the waveform of refractive index changes as a function of light beam penetration depth. It makes use of the capacity for overlap among light waves. This characteristic is reliant on the coherence of light. Light coherence comes in two forms: spatial, which describes the phase correlation of wave sequences produced by various points of the light source, and time, which describes the phase correlation of wave sequences produced by a single point of the light source at various times. The Michelson interferometer is used to look at the time consistency of light.

The light wave divides into two beams when it strikes the semi-transparent mirror, or BS (beam splitter). The movable mirror M1 reflects the light source (LS), which after passing through BS changes direction to perpendicular and then, without changing direction, travels through BS once more and reaches the screen D. (detector). The primary beam goes through BS without changing directions, creating a second beam that reflects off of the fixed mirror M2, changes directions while passing through BS to become perpendicular, and finally falls on screen D.An interference pattern is created by the beam striking the screen. The system's main component is the OCT imaging apparatus module. Any measuring tool with high sensitivity and resolution that can measure backscattered or reflected light qualifies. Also essential are devices that allow for lossless signal transmission. The measuring head and the system for bringing the probe beam to the test structure are further components of the OCT system.Depending on the area of medicine for which they are intended, they come in a variety of shapes. The entire OCT scanner is under the supervision of the computer system. It makes it possible to synchronise the operation of every component and control the interferometer's reference arm scanning. Furthermore, it enables real-time display of measurement data as well as communication between the apparatus and the image processing block. [2]

V. MAIN CHARACTERISTICS

- 1. OCT imaging uses wavelengths between 600 and 2,000 nm, where the primary components of tissue—water and pigments—exhibit low absorption.
- 2. The optical spectrum line width and coherence length should be larger in order to attain great depth resolution.
- 3. For interference to occur, there must be a precise phase agreement between the interfering waves. Single scattered photons work better for this than multiple scattered photons since the event loses phase information as the number of photons rises.
- 4. The weak signal in the object arm, backscattered or transmitted through the tissue, is magnified by the powerful signal in the reference arm because photodetection at the interferometer output includes multiplication of the two optical waves. This explains why OCT is more sensitive than confocal microscopy, which can only capture images of a depth of 0.5 mm in the skin, for example.
- 5. Diffraction is used to determine the transverse resolution because OCT is designed around a confocal microscope.
- 6. The strength of the source in modern systems is significantly below the American National Standards Institute (ANSI) threshold for tissue damage, making dental OCT imaging safer. In comparison, the ANSI threshold for skin injury from a source with a 1.3 mm wavelength is 96 mW and, assuming 8 hours of continuous exposure, it is a thousand times lower than the standard.
- 7. Instantaneous, near-microscopic views of the subsurface can be obtained.
- 8. Imaging of tissue morphology in real time.
- 9. No sample or subject preparation.
- 10. No contact with the patient.
- 11. Ionizing radiation is absent.[5]

VI. ADVANTAGES

- 1. A solution with high depth and cross section.
- 2. Non-invasive and contact-free operation.
- 3. Ability to provide visual contrast that is based on function.

- 4. No risk of radiation.
- 5. OCT supports early oral disease diagnosis.
- 6. Real-time monitoring of both hard and soft tissues is made possible by OCT.
- 7. High resolution and penetration depth, allowing for the imaging of both normal and pathological alterations to the oral mucosa.[6] **VII. DISADVANTAGES**
- 1. Restricted penetration depth in material that scatter light.
- 2. As OCT typically has a scanning range of several millimetres, numerous images would be required to scan an entire lesion.
- 3. The image acquisition time for OCT is longer.[6]

VIII. TYPES OF OCT

- 1. Time Domain OCT (TDOCT)
- 2. Spectral Domain OCT (SDOCT)
- 3. Functional OCT
- 4. Polarisation Sensitive OCT \Box
- 5. Differential Absorption OCT \Box
- 6. Doppler OCT
- 7. En-Face OCT or Full-Field OCT

Time Domain OCT (TDOCT)

The reference arm's path length is time-scanned in TDOCT. Interference, or a succession of dark and brilliant fringes, can only occur when the optical path difference (OPD) is within the light source's coherence length. As the OPD is

changed, the envelope of this modulation shifts, with the peak of the envelope corresponding to path-length matching.

This kind of OCT is covered in a number of reports. The periodontal ligament alterations brought on by orthodontic forces and orthodontic interfaces have been observed using TDOCT.

Spectral Domain OCT (SDOCT)

SDOCT measures the spectrum at the low coherence interferometer's output. The depth scan (A-scan), which is determined by a Fourier-transform from the acquired spectra without moving the reference arm, is possible due to the

Fourier relation (Wiener-Khintchine theorem between the auto correlation and the spectral power density). SDOCT significantly increases imaging speed because all depths are measured in a single step. Compared to TDOCT, SDOCT

also has a better signal-to-noise ratio. SDOCT can also be classified into camera-based, Fourier domain (FD) OCT and swept source (SS) OCT.

A narrow band optical source with a tunable frequency is employed in SSOCT. They use point photodetectors. While the axial range is constrained by the source's coherence length, the depth resolution is inversely related to the tuning

bandwidth; the smaller the line width, the greater the axial range.

In FDOCT, a dispersive detector is utilised to acquire the spectrum from a broadband optical source. The axial range is constrained by the spectrometer resolution, whereas the depth resolution is determined by the optical source

bandwidth.

Functional OCT

Functional OCT offers depth-resolved data on the backscattered signal's reflectance, phase, and polarisation. Here, the signals are indicative of functional alterations in the affected tissue or organ, which typically occur before

morphological abnormalities and aid in early identification. Functional OCT examples include polarization-sensitive (PS)-OCT, spectrometric OCT, differential absorption OCT, and Doppler OCT.

Polarisation Sensitive OCT

By examining variations in the polarisation state of the backscattered probe light beam, PS-OCT can identify and measure the polarisation characteristics of the tissue. Birefringent structural components in the target tissue can be found

using the information provided by polarisation sensitive OCT images. As a result, changes to the target's structure, functioning, or integrity may be associated with the images obtained. For instance, skin collagen gets denatured by

thermal damage, and polarisation sensitive OCT can detect these changes in the collagen.

Differential Absorption OCT

The system in differential absorption OCT employs two channels, each of which operates at a distinct wavelength. One wavelength is chosen for low absorption, and the other is chosen for wavelengths near to the absorption peak of the

component being examined.

Doppler OCT

Biological fluids are monitored or measured using Doppler OCT. The produced image is based on the depth-resolved profile of the vessel's flow velocity, with resolution set by the source's coherence length.

En-Face OCT or Full-Field OCT

An OCT variant based on white-light interference microscopy is called en-face OCT. In place of a complicated laser-based source, it uses a straightforward halogen lamp to produce ultrahigh resolution images in three dimensions (3D),

which is an alternative to the traditional OCT approach. Here, the tomographic images are created by combining interferometric images that were simultaneously captured by a detector array, such as a CCD camera, in the en-face

(transverse) orientation. [8]

IX. APPLICATIONS IN PERIODONTICS AND ORAL IMPLANTOLOGY [9-45]

Table 1

S.NO	TYPE OF OCT	HUMAN	ANIMAL	IN	AUTHOR	YEA	RESULTS
•				VITRO		R	
1	<i>a</i>	DENTAL BIO	FILM MONI	TORING		2012	
1.	Cross	Plaque samples of pediatric			Chen et	2012	CP-OCT has
	ontical	subjects			ai.		non-
	coherence						destructively
	tomography						monitor biofilm
	system (CP-						growth and
	OCT)						elucidate the
							growth
							characteristics
							of these
							different dental
							material
							compositions.
							CP-OCT was
							able to quantify
							the mass of the
							biofilm by
							measuring the
							overall depth-
							scattering of the
							biofilm.
2.	Spectral Domain	25 patients			Negrutiu	2016	The biofilm
	Optical	-			et al.		network was
	Coherence						dramatically
	Tomography						destroyed after
	(SD-0C1)						the professional
							OCT
							noninvasive
							methods can act
							as a valuable
							tool for the 3D
							characterization
							of dental
							Diomins.
3.	Custom flow cell			Tooth like	Englund	2017	This novel CP-
	system			surfaces	et al.		OCT flow cell
	integrated with a						assay has the
	real time cross						potential to
	ontical						interactions
	coherence						between
	tomography						antibiofilm
	system						agents and

							tooth like
							surfaces.
4.	Hand held OCT	Healthy volunteers and			Won et al	2020	OCT has a
	system	subjects with gingivitis and					strong potential
		sufficient plaque were					to display and
		recruited.					assess dental
							plaque and
							gingiva in a
							clinical setting.
							0
		DENTAL CAL	CULUS DEI	ECTION			
~	T:1 1		1		¥7 / 1	2015	XX7: 1 · 11
5.	Fiber-probe			Human	Kao et al	2015	With its all-
	swept-source			teeth			fiber-based
	optical			including			implementation
	coherence			molars			, miniature
	tomography (SS-			and			lightweight
	OCT)			premolars			fiber-probing
				(n =8)			optics, and high
							discriminatory
							capacity
							provided by
							simultaneous
							SD
							measurements,
							this compact
							and portable
							system may be
							an efficient tool
							for detecting
							subgingival
							calculus. The
							3D OCT
							scanning design
							and flexible
							projectile
							processing are
							also useful in
							image
							registration for
							OCT images
							from multiple
							mon multiple
							measurements,
							such as
							monitoring of
							calculus lesions
		4 11		~.	— · ·	0010	after treatment.
6.	Swept-source	I Human subject		Six	Tsubokaw	2018	the SS-OCT
	optical			extracted	a et al		system may

	coherence tomography (SS- OCT)			teeth with subgingiv al calculus and without apparent caries lesions or defects on the root surface			constitute a periodontal diagnostic tool with the capacity to detect subgingival calculus and root cementum.
7.	Spectral-domain optical coherence tomography	IMACING OF PERIODO		Ten teeth with calculus on the root surface	Krause et al	2019	Calculus on the root surface can be displayed by SD-OCT, which therefore may be suited as imaging technology for subgingival calculus in periodontal pockets.
0	D 1 . 1	IMAGING OF PERIODO	NTAL TISSU	ES/ORAL T	ISSUES	2000	
8.	OCT system	Healthy adults			Otis et al	2000	oct images exhibit microstructural details that cannot be obtained with current imaging modalities. Using this new technology, visual recordings of periodontal tissue contour, sulcular depth and connective tissue attachment now are possible. The internal aspects and marginal adaptation of porcelain and composite
							restorations can be visualized.

	coherence tomography	with Crohn's disease (CD), 12 patients with ulcera tive colitis (UC), 2 patients with oral mucosa lichen ruber planus (LRP), and 2 patients with chronic aphthous stomatitis					two boundary conditions of collagen disorganization, namely, loss of fibre properties at active inflammation which attenuates the signal and fibrosis that occurs due to synthesis of a new remodeled collagen which amplifies the OCT signal.
10.	Fourier Domain OCT		Five fresh porcine jaws		Mota et al.	2015	Regarding the ability of the two OCT systems to visualize periodontal structures, the system operating at 1325 nm shows a better performance, owing to a longer central wavelength that allows deeper tissue penetration. The results with the system at 930 nm can also be used, but some features could not be observed due to its lower penetration depth in the
11.	Time-domain optical coherence tomography			Extracted tooth samples along with gingival tissues	Damodara n et al.	2015	The conventional time domain OCT system acquisition speed is limited by the speed of the mechanical scanning system. In order to overcome this issue, a novel electro- optic-based scanning system is

					1	
						proposed and
12	Swept Source	23 periodontally healthy		Fernandes	2016	OCT has the
12.	OCT	patients		et al	2010	potential to be a
	001	putents		et ui.		reliable tool for
						in vivo
						periodontal
						tissues
						evaluation and
						for reproducible
						sulcus depth
						measurements
						in healthy sites.
						Further
						technological
						advances are
						required to
						procedure time
						and promote
						evaluation of
						posterior oral
						regions.
13.	Swept source	Human enamel, human	Rat	Salehi et	2017	These OCT
	OCT	cortical bone, human	masseteric	al.		features can
		trabecular bone	muscle and			reliably
			fatty tissue			differentiate
						between a range
						of hard and soft
						tissues and
						could be
						valuable in
						assisting
						dentists for in
						vivo evaluation
						of oral tissues
						and early
						detection of
						pathologic
						changes in the
14	Swant source		Five	Dort at al	2017	Dentel OCT or
14.	optical		headle	Faiketai	2017	Used in this
	coherence		dogs			study was able
	tomography (SS-		uogs			to generate
	OCT)					high-resolution,
	,					cross sectional
						images of the
						superficial
						portions of
						periodontal
						structures.

15.	Hand held optical coherence tomography	Healthy 24-year-old male and 25-year-old female		Tsai et al	2017	The developed handheld OCT system has been demonstrated for in vivo oral cavity imaging, enabling the identification of the different structures and observation of the microcirculatio n features of various oral mucosal types.The developed OCT system is a promising tool for noninvasive imaging of oral mucosae.
16.	State-of-the-art swept-source OCT (SS-OCT) and OCT angiography (OCTA).	Human gingiva		Le et al	2018	Significant structural and vascular differences between the two extreme gingival biotypes (ie, thick and thin gingiva), and demonstrated special features of vascular arrangement and characteristics in gingival inflammation
17.	Swept Source OCT	147 vestibular dental sites from 49 teeth in 14 patients aged 18-65 years old (6 males and 8 females)		Fernandes et al	2019	The study evidenced the ability of OCT in the identification of periodontal structures and alterations, being an important non- invasive complement or even alternative for periodontal probes for treatment followup.

18.	Optical	Two human subjects		Lai et al	2019	This work
	Coherence Tomography					proposed a non-
	Tomography					framework for
						frequent
						inspection by
						estimating the
						alveolar line of
						the target
						optical
						coherence
						Our system
						optically
						scanning results
						for precise
19.	Swept-source	Five healthy volunteers (3		Lee et al	2019	The gingival
	optical	males and 2 females				sulcus depth
	tomography (SS-					quantitatively
	OCT)					measured by
						swept-source
						OCT system
						developed
						image
						algorithm as
						well as
						structural
						visualization,
						ultimately
						confirmed the
						applicability for
						gingival sulcus
						depth real-time assessment.
20.	Swept source	11 patients (six female and		Kim et al	2022	The CNN
	OCT system	five male patients)				applied to
						automatically
						segment the
						structures of the
						tooth enamel
						bone and to

							quantitatively
							measure the
							ABL by
							automatically
							detecting the
							CEJ and the
							ABC in OCT
							images. The
							CNN models
							showed high
							segmentation
							accuracies in
							the tooth
							enamel and
							alveolar bone
							regions, and the
							ABL measured
							by detection
							results from
							CNN
							predictions
							demonstrated
							high correlation
							and reliability
							with the ground
							truth in OC I
CINC	IVAL DISEASE/D	EDIODONITAL DISEASE/DEI		INTEL A NANA	A TION/DEI	ΠΟΡΟΝ	images.
GING	IVAL DISEASE/I	ASS	OCIATED				TALIOCKEI
21	Prototype optical	1100	Porcine		Colston et	1998	The images
	coherence		periodontal		al	1770	clearly show
	tomography		tissues				the enamel-
	~OCT system						cementum and
							the gingiva-
							tooth interfaces.
							indicating OCT
							is a potentially
							useful
							technique for
							diagnosis of
							periodontal
							diseases.
22.	Swept-source		Porcine		Kim et al.	2017	OCT was able
	OCT system		1				1.
			sample				to visualize
			sample				to visualize periodontal
			sample				to visualize periodontal pockets and
			sample				to visualize periodontal pockets and show
			sample				to visualize periodontal pockets and show attachment loss.
			sample				to visualize periodontal pockets and show attachment loss. By calculating
			sample				to visualize periodontal pockets and show attachment loss. By calculating the calibration
			sample				to visualize periodontal pockets and show attachment loss. By calculating the calibration factor to
			sample				to visualize periodontal pockets and show attachment loss. By calculating the calibration factor to determine the
			sample				to visualize periodontal pockets and show attachment loss. By calculating the calibration factor to determine the accurate axial
			sampie				to visualize periodontal pockets and show attachment loss. By calculating the calibration factor to determine the accurate axial resolution,
			sampie				to visualize periodontal pockets and show attachment loss. By calculating the calibration factor to determine the accurate axial resolution, quantitative
			sample				to visualize periodontal pockets and show attachment loss. By calculating the calibration factor to determine the accurate axial resolution, quantitative standards for
			sample				to visualize periodontal pockets and show attachment loss. By calculating the calibration factor to determine the accurate axial resolution, quantitative standards for measuring
			sample				to visualize periodontal pockets and show attachment loss. By calculating the calibration factor to determine the accurate axial resolution, quantitative standards for measuring periodontal
			sampie				to visualize periodontal pockets and show attachment loss. By calculating the calibration factor to determine the accurate axial resolution, quantitative standards for measuring periodontal pocket depth
			sampie				to visualize periodontal pockets and show attachment loss. By calculating the calibration factor to determine the accurate axial resolution, quantitative standards for measuring periodontal pocket depth can be
			sampie				to visualize periodontal pockets and show attachment loss. By calculating the calibration factor to determine the accurate axial resolution, quantitative standards for measuring periodontal pocket depth can be established
			sampie				to visualize periodontal pockets and show attachment loss. By calculating the calibration factor to determine the accurate axial resolution, quantitative standards for measuring periodontal pocket depth can be established regardless of

							periodontal
							pocket in the
							OCT image.
23.	Swept-source		Mandibles		Kang et al	2017	OCT could
	optical		of the		C		automatically
	coherence		porcine				detect the
	tomography (SS-		model				position of
	OCT).						various cracks
							in the OCT
							images and
							visualize deep
							periodontal
							pockets. By
							calculating the
							calibration
							factor to
							determine the
							accurate axial
							resolution. a
							quantitative
							standard
							measuring
							sulcus depth
							can be
							established
							regardless of
							the position of
							the gingival
							sulous in the
							OCT image
							We were able
							to automatically
							detect the
							negition of
							position or
							in the OCT
							in the OCT
							Therefore the
							detection
							appability of
							55-001
							males SS OCT
							make SS-OCT
							a uselui
							for dontal care
24	ОСТ	Gingival samples were			Surlin at	2010	OCT has
24.		collected from three types of				2018	DCT flas
		notionts, nationts with			aı		proven that in
		patients: patients with					an m-vitro
		periodontal disease; patients					environment it
		with periodontal disease and					can be a useful
		a systemic					tool for the
		comorbidity;periodontal and					assessment of
		systemic healthy patients.					periodontal
							inflammation in
							gingival
							samples of
							periodontal
							patients.

25.	Optical coherence tomography and light-induced autofluorescence (LIAF).	Gingivitis case study		Le et al	2021	Under OCTA, the angiogenic sites saw a proliferation of vessels, followed by a shrinkage of vessels for a period of approximately 6 days after the peak proliferation. In the nonangiogenic site, vessels increased in size but not as dramatically, then reduced gradually over a period of approximately 7 to 8 days. Autofluorescen ce imaging (LIAF) demonstrated the presence of mature plaque and calculus. All the observations are consistent with previous literature in regard to the mechanism of host response, and the period of time required for gingivitis resolution. The result of this study illustrates that an immediate

26.	Raman microspectrosco py (RMS) and micro-optical coherence tomography (µOCT)	Gingival biopsies from eight subjects with healthy periodontal tissues or with Stage II to IV periodontitis	GENERATIO	ON THERAF	Saggu et al	2022	application of the OCT-LIAF system may include a study of how gingival inflammation correlates with changes in the properties of blood vessels (obtained from OCTA), gingival thickness (obtained from OCT), and red fluorescence due to the accumulation of biofilm. Results suggest that combined RMS/μOCT chairside imaging may distinguish between healthy and diseased sites by evaluating marginal periodontal morphological and biochemical features.
27	0	Verse ferrele settient	GENERAIN	JI IIIZKAI	Г	2016	
21.	OCT	r oung remaie patient			et al.	2010	efficient method in the evaluation of gingival regeneration.
20		PERIODONTAL '	ΙΗΕΚΑΡΥ Ε	ULLOW UP	G	0010	
28.	Swept-Source OCT device	1 Human subject			Graça et al	2019	OCT was found to be a promising

							approach for the professional evaluation of aesthetic oral rehabilitation, as it was capable of generating images that enabled the analysis of gingival recovery and the adhesive interface.
	PERIOI	DONTAL LIGAMENT CHAN	GES WITH C	DRTHODON	TIC TREAT	MENT	
29.	OCT		Four white rats		Na et al	2008	These results support the clinical dental application of OCT for monitoring the ligament changes during orthodontic procedures. The real-time imaging capability of OCT, together with its high resolution, has the potential to help dentists with in vivo orthodontic treatments in human subjects as well.
30.	Time-domain OCT system		6 white rats		Baek et al	2009	This preliminary study shows the possible evaluation and prediction of precise tooth responses under orthodontic forces by using real-time OCT.
21	DEN	TAL IMPLANTS AND ITS AS	SUCIATED	PERIODON	TAL DISEA	SES	701
31.	Near infrared absorption (NIR) and optical coherence tomography			<i>Ex vivo</i> human jaw bone.	Weber et al.	2013	The proximity to the neurovascular bundle can be tracked in real time in the range of a few millimeters with NIR signals, after

					which higher
					resolution
					imaging OCT
					to provide finer
					ranging in the
					submillimeter
					distances.
32.	Dental SS-OCT	Fresh	Kikuchi et	2014	OCT appeared
		porcine	al.		as an effective
		periodontal			tool for
		tissues			evaluating the
					misfit of
					implant-
					abutment under
					thin layers of
22	D () 1 (1	D 1 / 1		2016	soft tissue.
33.	Prototype dental	Edentulous	Bordin et	2016	Development of
	OCT Imaging	nuges of	al.		clinical applications of
	system	d			OCT imaging
		Göttingen			for early
		female			diagnosis of
		mininios			mucositis could
		mmpigs			lead to
					therapeutic
					interventions to
					reduce one of
					the causes of
					implant failure.
34.	OCT system	Mandibles	Sanda et	2016	Cement
		of pigs	al		remnants at the
					submucosal
					area can be
					detected in
					some cases,
					which can be
					neipful in
					implent
					disassas OCT
					could have
					notential as an
					effective
					diagnostic
					instrument in
					the field of
					implant
					dentistry as
					well.
35	OCT System	Doroino	Kim at al	2019	OCT images
55.	OCT System	mandihles	ixiii et ai	2010	can be used to
		munuloies			visualize the
					peri-implant
					bone level and
					to identify bone
					defects. The
					potential of
					quantitative

							non-invasive measurements of the amount of bone loss was also
							commed.
		PERIODONTAL DISEASE	AND SYSTE	MIC INVOL	VEMENT		
36.	OCT OCS 1300SS device	Gingival tissue samples obtained from patients who were divided into three groups – P (periodontitis), non-alcoholic fatty liver disease(NAFLD+Periodontiti s), (NAFLD+periodontitis and H (healthy) groups			Surlin et al	2021	After comparing the OCT analysis results obtained for the three groups of patients, we can consider that non-alcoholic fatty liver disease (NAFLD)may be an aggravating factor for the inflammation of periodontal
37.	Dynamic optical coherence tomography, laser perfusion, and capillaroscopic video imaging.	Gingival inflammation induced in 21 healthy volunteers			Townsend et al	2022	After 3 weeks of plaque accumulation, there was wide variation in microvascular reactions between the participants. Reduced capillary flow was associated with the development of venular capillaries in some individuals. This is noteworthy, as an early increase in venous capillaries is a key vascular feature of cardiovascular disease, psoriasis, Sjögren syndrome, and rheumatoid arthritis— diseases with a significant association with

		development of
		severe gingival
		inflammation,
		which leads to
		periodontitis.

X. FUTURE POTENTIAL

Enhancing the contrast between healthy and diseased tissues should be worked upon.

Creating imaging software and algorithms for image analysis, contrast measurement, and image registration for real-time simultaneous processing and analysis of images should be the focus of future research.

XI. CONCLUSION

OCT is a vital tool for the in vivo and in vitro examination of oral tissues. OCT enables soft-tissue imaging, which is crucial for treating periodontal diseases, as it is hard to examine direct clinically, and provides excellent opportunities

for early identification of lesions in the oral mucosa. After addressing the issues relating to the availability and quality of equipment, OCT will become the method of choice in contemporary dental diagnostics because it provides tissue

sections in a non-contact and non-invasive manner and enables real-time tissue imaging in situ without the need for biopsy, histological procedures, or the use of X-rays.

Considering the benefits of OCT as described in this review, it is recommended that handheld OCT devices be developed further, particularly for dental applications, to increase their viability, lower their costs, and most importantly

attract researchers who would maximise their usage in clinical settings.

OCT is a cutting-edge diagnostic tool that has the potential to transform periodontal examination. In general, it is a useful technique for examining and evaluating oral hard and soft tissues. OCT imaging's special abilities, on the other

hand, imply that it has the potential to significantly affect the clinical management and diagnosis of periodontal diseases as well as lower the failure rate of periodontal treatments by saving time and resources.

REFERENCES

- 1. Agrawal P, Sanikop S, Patil S. New developments in tools for periodontal diagnosis. International Dental Journal. 2012 Apr;62(2):57-64.
- 2. Yeragi E, Nalawade KP, Gotmare S, Yeragi P, Prabhu V. Optical Coherence Tomography (Oct): 6th Generation Periodontal Probe??? A Review. Optical Coherence Tomography.
- 3. Putra RH, Yoda N, Astuti ER, Sasaki K. Potential Imaging Capability of Optical Coherence Tomography as Dental Optical Probe: A Mini-Review. Applied Sciences. 2021 Nov 21;11(22):11025.
- 4. Sowmya Reddy Nandipati, Devapriya Appukuttan, P.S.G Prakash, Sangeetha Subramanian. Utility Of Optical Coherence Tomography- A Novel Imaging Tool In Periodontics. Annals of RSCB. 2021 May 8;25(6):16909–21.
- 5. Prabhat M, Sudhakar S, Patil K, Mahima V, Srikrishna K. Optical Coherence Tomography in Dentistry: An Emerging Perspective. Kailasam S, editor. JIAOMR. 2012 Oct 15;24:324–9.
- 6. Maji DA. Optical Coherence Tomography (Oct) A Review. Indian Journal Of Applied Research. 8(2).
- Katkar RA, Tadinada SA, Amaechi BT, Fried D. Optical Coherence Tomography. Dental Clinics of North America. 2018 Jul;62(3):421–34.
- 8. Tejaswi Bollina, Sindhu Ramesh. Optical Coherence Tomography An Update. Int J Pharm Clin Res. 8(1):69–74.
- 9. Chen R, Rudney J, Aparicio C, Fok A, Jones RS. Quantifying dental biofilm growth using cross-polarization optical coherence tomography: Quantifying biofilms with CP-OCT. Letters in Applied Microbiology. 2012 Jun;54(6):537–50.
- 10. Negruțiu et al. Assessment of Dental Plaque by Optoelectronic Methods. Proc. of SPIE Vol. 9670 96700W-8
- 11. Englund K, Nikrad J, Jones R. Assessing the dynamic biofilm removal of sulfonated phenolics using CP-OCT. In: Rechmann P, Fried D, editors. San Francisco, California, United States; 2017 [cited 2023 Mar 26]. p. 1004409. Available from: http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2254624
- Won J, Huang PC, Spillman DR, Chaney EJ, Adam R, Klukowska M, et al. Handheld optical coherence tomography for clinical assessment of dental plaque and gingiva. J Biomed Opt [Internet]. 2020 Nov 26 [cited 2023 Mar 25];25(11). Available from: https://www.spiedigitallibrary.org/journals/journal-of-biomedical-optics/volume-25/issue-11/116011/Handheld-opticalcoherence-tomography-for-clinical-assessment-of-dental-plaque/10.1117/1.JBO.25.11.116011.full
- 13. Kao MC, Lin CL, Kung CY, Huang YF, Kuo WC. Miniature endoscopic optical coherence tomography for calculus detection. Appl Opt. 2015 Aug 20;54(24):7419.
- 14. Tsubokawa M, Aoki A, Kakizaki S, Taniguchi Y, Ejiri K, Mizutani K, et al. In vitro and clinical evaluation of optical coherence tomography for the detection of subgingival calculus and root cementum. Journal of Oral Science. 2018;60(3):418–27.
- 15. Krause F, Schmalz G, Park KJ, Schmidt J, Ziebolz D, Schneider H, et al. Evaluation of calculus imaging on root surfaces by spectral-domain optical coherence tomography. Photodiagnosis and Photodynamic Therapy. 2019 Mar;25:275–9.
- 16. Otis LL, Colston BW, Everett MJ, Nathel H. Dental optical coherence tomography: a comparison of two in vitro systems. Dentomaxillofac Radiol. 2000 Mar 29;29(2):85–9.
- 17. Gladkova et al.Evaluation of oral mucosa collagen condition with cross-polarization optical coherence tomography.J. Biophotonics 1–10 (2012)
- 18. Mota CCBO, Fernandes LO, Cimões R, Gomes ASL. Non-Invasive Periodontal Probing Through Fourier-Domain Optical Coherence Tomography. Journal of Periodontology. 2015 Sep;86(9):1087–94.
- Damodaran V, Vasa NJ, Sarathi R, Rao SR. Non-invasive detection of periodontal loss of attachment using optical coherence tomography. In: Bhattacharya K, editor. Kolkata, India; 2015 [cited 2023 Mar 26]. p. 96540Q. Available from: http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2181744

- 20. Fernandes et al.In vivo assessment of periodontal structures and measurement of gingival sulcus with Optical Coherence Tomography: a pilot study.J. Biophotonics 1–8 (2016)
- 21. Salehi et al.Characterization of human oral tissues based on quantitative analysis of optical coherence tomography images.Proc. of SPIE Vol. 10044 1004406-1
- Park JY, Chung JH, Lee JS, Kim HJ, Choi SH, Jung UW. Comparisons of the diagnostic accuracies of optical coherence tomography, micro-computed tomography, and histology in periodontal disease: an ex vivo study. J Periodontal Implant Sci. 2017;47(1):30.
- 23. Tsai MT, Chen Y, Lee CY, Huang BH, Trung NH, Lee YJ, et al. Noninvasive structural and microvascular anatomy of oral mucosae using handheld optical coherence tomography. Biomed Opt Express. 2017 Nov 1;8(11):5001.
- 24. Le NM, Song S, Zhou H, Xu J, Li Y, Sung CE, et al. A noninvasive imaging and measurement using optical coherence tomography angiography for the assessment of gingiva: An in vivo study. J Biophotonics. 2018 Dec;11(12):e201800242.
- 25. Fernandes LO, Mota CCB de O, Oliveira HO, Neves JK, Santiago LM, Gomes ASL. Optical coherence tomography followup of patients treated from periodontal disease. J Biophotonics. 2019 Feb;12(2):e201800209.
- 26. Lai YC, Chiu CH, Cai ZQ, Lin JY, Yao CY, Lyu DY, et al. OCT-Based Periodontal Inspection Framework. Sensors. 2019 Dec 12;19(24):5496.
- Lee J, Park J, Faizan Shirazi M, Jo H, Kim P, Wijesinghe RE, et al. Classification of human gingival sulcus using swept-source optical coherence tomography: In vivo imaging. Infrared Physics & Technology. 2019 May;98:155–60.
- 28. Kim SH, Kim J, Yang S, Oh SH, Lee SP, Yang HJ, et al. Automatic and quantitative measurement of alveolar bone level in OCT images using deep learning. Biomed Opt Express. 2022 Oct 1;13(10):5468.
- 29. Colston BW, Everett MJ, Da Silva LB, Otis LL, Stroeve P, Nathel H. Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography. Appl Opt. 1998 Jun 1;37(16):3582.
- 30. Kim SH, Kang SR, Park HJ, Kim JM, Yi WJ, Kim TI. Improved accuracy in periodontal pocket depth measurement using optical coherence tomography. J Periodontal Implant Sci. 2017;47(1):13.
- Kang SR, Kim JM, Kim SH, Park HJ, Kim TI, Yi WJ. Tooth cracks detection and gingival sulcus depth measurement using optical coherence tomography. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) [Internet]. Seogwipo: IEEE; 2017 [cited 2023 Mar 25]. p. 4403–6. Available from: https://ieeexplore.ieee.org/document/8037832/
- Şurlin P, Camen A, Stratul SI, Roman A, Gheorghe DN, Herăscu E, et al. Optical coherence tomography assessment of gingival epithelium inflammatory status in periodontal — Systemic affected patients. Annals of Anatomy - Anatomischer Anzeiger. 2018 Sep;219:51–6.
- 33. Le N, Cheng H, Subhash H, Kilpatrick-Liverman L, Wang RK. Gingivitis resolution followed by optical coherence tomography and fluorescence imaging: A case study. J Biophotonics [Internet]. 2021 Dec [cited 2023 Mar 25];14(12). Available from: https://onlinelibrary.wiley.com/doi/10.1002/jbio.202100191
- Saggu A, Maguluri G, Grimble J, Park J, Hasturk H, Iftimia N, et al. Raman microspectroscopy/micro-optical coherence tomography approach for chairside diagnosis of periodontal diseases: A pilot study. Journal of Periodontology. 2022 Dec;93(12):1929–39.
- 35. Fernandes LO, Graça NDRL, Melo LSA, Silva CHV, Gomes ASL. Monitoring the gingival regeneration after aesthetic surgery with optical coherence tomography. In: Rechmann P, Fried D, editors. San Francisco, California, United States; 2016 [cited 2023 Mar 26]. p. 96920Q. Available from: http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2213715
- 36. Graça NDRL, Palmeira AR de BLS, Fernandes LO, Pedrosa M da S, Guimarães RP, dos Santos SC, et al. In vivo optical coherence tomographic imaging to monitor gingival recovery and the adhesive interface in aesthetic oral rehabilitation: A case report. Imaging Sci Dent. 2019;49(2):171.
- Na J, Lee BH, Baek JH, Choi ES. Optical approach for monitoring the periodontal ligament changes induced by orthodontic forces around maxillary anterior teeth of white rats. Med Biol Eng Comput. 2008 Jun;46(6):597–603.
- Baek JH, Na J, Lee BH, Choi E, Son WS. Optical approach to the periodontal ligament under orthodontic tooth movement: A preliminary study with optical coherence tomography. American Journal of Orthodontics and Dentofacial Orthopedics. 2009 Feb;135(2):252–9.
- 39. Weber et al.Towards a bimodal proximity sensor for in situ neurovascular bundle detection during dental implant surgery.Biomedical Optics Express.January 2014 .Vol. 5,No. 1
- 40. Kikuchi et al.Evaluation of the marginal fit at implant-abutment interface by optical coherence tomography.J Biomedical Optics .2014;19(5)
- 41. Bordin S, Pino CM, Mavadia-Shukla J, Li X.Optical Coherence Technology Detects Early Signs of Peri-implant Mucositis in the Minipig Model. IJDOS. 2016 Dec 2;375–9.
- 42. Sanda M, Shiota M, Imakita C, Sakuyama A, Kasugai S, Sumi Y. The effectiveness of optical coherence tomography for evaluating peri-implant tissue: A pilot study. Imaging Sci Dent. 2016;46(3):173
- 43. Kim S, Kang SR, Park HJ, Kim B, Kim TI, Yi WJ. Quantitative measurement of peri-implant bone defects using optical coherence tomography. J Periodontal Implant Sci. 2018;48(2):84.
- 44. Surlin P, Didilescu AC, Lazar L, Arsenie CC, Camen A, Popescu DM, et al. Evaluation Through the Optical Coherence Tomography Analysis of the Influence of Non-Alcoholic Fatty Liver Disease on the Gingival Inflammation in Periodontal Patients. DMSO. 2021 Jun;Volume 14:2935–42.
- 45. Townsend D. Identification of venular capillary remodelling: a possible link to the development of periodontitis? J Periodontal Implant Sci. 2022;52(1):65.