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ABSTRACT: An (n,k,d) linear code over the finite field F = GF(q) is maximum- distance separable(MDS) if it attains the 

Singleton bound d ≤ n-k+1. A k × n matrix G over F is a generator matrix of an MDS code if and only if every k columns of 

G are linearly Independent. In most cases, error patterns with slightly more than D/2 error can be corrected by an (N, K) 

maximum- distance separable (MDS) code. Earlier the complexity of computation increased with number of additional 

errors, where a single error could be amended with an acceptable degree of computation. To fight out this problem Sudan’s 

algorithm (1997) more errors can be corrected, in addition to this provides proof that for a limited number of errors, the 

correct codeword is always on a very small list of possible transmitted words. The right codeword is always on a very small 

list of possible transmitted words. 
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1. INTRODUCTION 

An (n,k,d) linear code over the finite field F = GF(q) is maximum- distance separable(MDS) if it attains the Singleton bound d ≤ n-

k+1. A k × n matrix G over F is a generator matrix of an MDS code if and only if all k columns of G are linearly Independent. If G 

is a systematic generator matrix i.e., G = [I, A], I being the identity matrix of order k, and A is a k×(n-k) matrix, then G generates 

an MDS code if and only if every square submatrix of A is nonsingular. Such matrix A will be called super regular. 

When k = 1, there exist arbitrarily long MDS codes, e.g., repetition codes, and  

when k ≥ q, a code is MDS only if it has minimum distance ≤ 2. Therefore, Roth and Lempel (1989) worked only with codes of 

dimension k, 2 ≤ k ≤ q-1. In this case, it is known that MDS codes cannot be arbitrarily long. Let Nmax(k,q), 2 ≤ k ≤ q-1,be the 

maximal length of any MDS code of dimension k over GF(q).Then, q+1 ≤ Nmax(k,q) ≤   q+k-1. Furthermore, for some special cases 

of k and q, it can be shown that Nmax (k, q) = q+1. 

 A well-known family of MDS codes is the set of generalized Reed-Solomon (GRS) codes. Let ( )110 ,,, −= n  be a 

vector of distinct element of F, and let ( )110 ,,, −= nvvvv  be a vector of nonzero element of F.C is a GRS (n, k, α, v), if it has 

a generator matrix of the form G = [G0 G1  Gn-1],    (1.1) 

Where the Gi are columns of the for Gi = ( ) .10,,,,, 12 − − nivvvv
Tk

iiiiiii   

This definition includes extended GRS codes, for which one of the αi is 0. A further extension that preserves the MDS property is 

possible by allowing a column of the form 

   
Where v∞ is a nonzero element of Field F. Such a column is said to correspond to the infinity “element”. In this case the code is 

called a generalized doubly extended RS code (GDRS), and the notation  

GDRS (n + 1, k, α, v) in terms of the vectors a and v by abusing notation and writing 

( )nss  ,...,,,,....,, 121 = −  

and 

v= (v1,v2,….,vs-1, v ,vs,…,vn), 

where s is the index of G , in Serge (1955) and Thas (1968) considered GRS codes corresponds to a normal rational curve, in 

geometric terms.  

Roth and Seroussi (1985) told that a matrix of the form G = [I A] generates a GRS code iff A = [aij] is a Cauchy matrix.i.e., 

,10,10, −−−
+

= knjki
yx

dc
a

ji

ji

ij
Where the xi and yj are distinct element of F, xi + yj ≠ 0 for all i and j, and ci,dj 

≠ 0.Given a k × r Cauchy matrix A = [aij] over F = GF(q), according to Roth(1989) we can always assume a0j = dj and a1j = d1yj
-1,0 

≤ j ≤ r-1. A is called an extended Cauchy matrix if it has a row (column) of ones, and deleting this row (column) transforms A into 

a Cauchy matrix. 

2. LITERATUTRE REVIEW 

Binbin Pang(2021) Entanglement-assisted quantum error-correcting codes (EAQECCs) can be obtained from arbitrary classical 

linear codes based on the entanglement-assisted stabilizer formalism, which greatly promoted the development of quantum coding 

theory. In this paper, we construct several families of [Formula: see text]-ary entanglement-assisted quantum maximum-distance-

separable (EAQMDS) codes of lengths [Formula: see text] with flexible parameters as to the minimum distance [Formula: see text] 
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and the number [Formula: see text] of maximally entangled states. Most of the obtained EAQMDS codes have larger minimum 

distances than the codes available in the literature. 

Hai Q. Dinh (2021) Symbol-pair codes are used to protect against symbol-pair errors in high density data storage systems. One of 

the most important tasks in symbol-pair coding theory is to design MDS codes. MDS symbol-pair codes are optimal in the sense 

that such codes attain the Singleton bound. In this paper, a new class of MDS symbol-pair codes with code-length 5p and optimal 

pair distance of 7 is established. It is shown that for any prime p ≡ 1 (mod 5), we can always construct four p-ary MDS symbol-pair 

cyclic codes of length 5p of largest possible pair distance 7. We also completely determined all MDS symbol-pair and MDS b-

symbol codes of length p s and 2p s over F p m + uF p m by filling in some missing cases, and rectifying some gaps in Type 3 codes 

of recent papers. As an applications of our results, we use MAGMA to provide many examples of new MDS codes over F p m and 

F p m + uF p m 

Elif Segah Oztas (2021) MDS codes are elegant constructions in coding theory and have mode important applications in 

cryptography, network coding, distributed data storage, communication systems et. In this study, a method is given which MDS 

codes are lifted to a higher finite field. The presented method satisfies the protection of the distance and creating the MDS code 

over the $F_q$ by using MDS code over $F_p The main generation method for MDS code is Reed Solomon (RS) codes, especially 

Generalized Reed Solomon (GRS) codes. In GRS, the code [n, k, n − k + 1]q can obtain where n ≤ q . There are some 

approaches for constructing MDS matrices such that Vandermonde matrix, circulant matrix, Cauchy matrix, Toeplitz matrices etc. 

[2, 3,10,44–47]. All of them compute and improve their method over the defined field in the papers. However, calculation 

complexity increases over the field which has high cardinality for any construction methods for MSD codes, especially in the 

recursive generating method. 

Ziling Heng (2020) Recently, subfield codes of geometric codes over large finite fields $\gf(q)$ with dimension $3$ and $4$ were 

studied and distance-optimal subfield codes over $\gf(p)$ were obtained, where $q=p^m$. The key idea for obtaining good subfield 

codes over small fields is to choose very good linear codes over an extension field with small dimension. This paper first presents 

a general construction of $[q+1, 2, q]$ MDS codes over $\gf(q)$, and then study the subfield codes over $\gf(p)$ of some of the 

$[q+1, 2,q]$ MDS codes over $\gf(q)$. Several families of distance-optimal codes over small fields are produced 

Qiuyan Wang (2020) A linear code with parameters of the form $[n, k, n-k+1]$ is referred to as an MDS (maximum distance 

separable) code. A linear code with parameters of the form $[n, k, n-k]$ is said to be almost MDS (i.e., almost maximum distance 

separable) or AMDS for short. A code is said to be near maximum distance separable (in short, near MDS or NMDS) if both the 

code and its dual are almost maximum distance separable. Near MDS codes correspond to interesting objects in finite geometry and 

have nice applications in combinatorics and cryptography. In this paper, seven infinite families of $[2^m+1, 3, 2^m-2]$ near MDS 

codes over $\gf(2^m)$ and seven infinite families of $[2^m+2, 3, 2^m-1]$ near MDS codes over $\gf(2^m)$ are constructed with 

special oval polynomials for odd $m$. In addition, nine infinite families of optimal $[2^m+3, 3, 2^m]$ near MDS codes over 

$\gf(2^m)$ are constructed with oval polynomials in general. 

3. BOUNDS ON THE LENGTHS OF MDS CODES  

By definition, a GRS code with 2 ≤ k ≤ q-1 may be of length at most q+1. For 2 ≤ k ≤ q-1, let Nmin(k,q) be minimal integer, if any, 

such that every [n,k] MDS code over F with n ≥ Nmin(k,q) is GRS; if no such integer exists, Nmin(k,q) = q+2. Clearly, Nmin(2,q) = 2, 

and so  Nmax(2,q) = q+1. To obtain an upper bound on Nmin(k,q) for larger values of k, we make use of the following result. 

Lemma 1.1: If q is even, every [n,3] MDS code over GF(q) with is GRS. 

Lemma 1.2: Given a k × r extended Cauchy matrix A = [aij] over GF(q), we can always assume a0j = dj and a1j = 1,0 ≤ j ≤ r-1. 

Proof: Let C be an [r+k, k] GERS code with a given standard generator matrix G of the form (1.1). First, we show that C has another 

standard generator matrix G  with G0 corresponding to infinity and G1 corresponding to one. Assume that the first column of G 

corresponds to some element α0 F. MacWilliams and Slone (1977) considered a k × k nonsingular matrix T exits such that the 

ith column in GTG .ˆ = is given by 

( )1

00 )(...)(1ˆ −−−= k

iiii vG  The infinity column of G, if any, remains unchanged. Thus, the first column of 

Ĝ corresponds to the zero element. Reversing the order of the rows of Ĝ , we obtained a standard generated matrix G
~

 with its 

first column corresponding to infinity. As before, there now exists a linear transformation on the row of G
~

 yielding a standard 

generator matrix G  with the desired first two columns. 

Second, let [I A] be the (unique) systematic generator matrix of C. Then A is a extended Cauchy matrix and its rows, being in a 

one-to-one correspondence with the first k coordinates of C, can be associated with the first k columns of any standard generator 

matrix of C. In particular, associating the rows of A with the first k columns of G yields a0j = c0dj and a1j = c1. Now, normalizing 

the parameters involved, we can always set c0 = c1 =1. 

4. APPLICATION TO SUPERREGULAR MATRI  

Let C be a GDRS(n+1, k, α, v) code defined by α = (α0,α1,  ,αs-1,∞,αs,  ,αn-1) And v = (v0,v1,  ,vs-1,v∞,vs,  ,vn-1), with  k - 1 

< s ≤n. Then C has a generator matrix of the form [I A ], where  A = [A0,A1,  ,As-k,A∞,As-k+1,  ,An-k+1] is a k×(n+1-k) GEC 

matrix obtained from the Cauchy matrix A by inserting the column. A∞= d∞(c0,c1,  ,ck-1)T before the (s-k+1)th column of A if s < 

n, or as the last column if s = n. Here d∞ = v∞ and take c0 = c1 = 1.The results of the previous section on MDS codes be expressed in 

terms of superregular matrix with the subclass of Cauhy matrices corresponding to GRS codes. For instance, the analog of Lemma 

5 takes the following form. Suppose there exist integer s ≥ 1, t ≥ 3 such that every s×t superregular matrix over F = GF(q) is a 

extended Cauchy matrix. Then, for every r ≥ t, each s × r matrix is a superregular matrix if and only if it is a extended Cauchy 

matrix. 
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Let A = [aij] be a k × r matrix over F with aij≠0 for all 0 ≤ i ≤ k-1 and 0 ≤ j ≤ r-1, and 0 ≤ j ≤ r-1, and let  1−= ij

c aA ; that is, every 

entry of Ac is the inverse of the corresponding entry of A. 

Lemma 1.3: Let A be a k × (r + 1) matrix over F with nonzero entries. Then A is a Generalized Extended Cauchy (GEC) matrix if 

and only if Ac satisfies the following two conditions:  

1. every 2×2 submatrix of Ac is nonsingular. 

2. every 3×3 submatrix of Ac is singular. 

Proof: The lemma holds trivially min (k, r + 1) ≤ 2. Therefore, we assume that k, r+1 ≥ 3. First, we prove the “only if” part. Suppose 

A is a generalized extended Cauchy matrix. So 

 A = [A0, A1,  ,As-1, A∞, As,  , Ar-1] 

Then, the first row of Ac is given by 














=

−− 1110

0

111111

rss

c

dddddd
a (1.2) 

The second row of Ac is given by 











=

−

−

−

−

1

1

1

1

1

1

0

0
1

1

r

r

s

s

s

sc

d

y

d

y

dd

y

d

y

d

y
a   (1.3) 

And the ith row of Ac, 2 ≤ i ≤ k-1, is given by 








 +


++
=

−

−

 1

1

1

1

0

0 1

ri

ri

ii

i

i

ic

i
dc

yx

dcdc

yx

dc

yx
a , 

Therefore, 

c

i

c

o

i

ic

i a
c

a
c

x
a 1

1
+= ,   2≤ i ≤ k-1,  o≤ j ≤ s-1and s ≤ j ≤ r-1 

And  
c

i

c

i

c

i a
c

a
c

a  += 10
2

1

2

1
 

Which means that every row in Ac is a linear combination of its first two rows, thus proving b). Condition a) follows from the fact 

that a 2 × 2 submatrix of Ac is nonsingular if and only if the corresponding 2 × 2 submatrix of A is nonsingular. 

 For the “if” part, suppose Ac is a k × r + 1 matrix with nonzero entries satisfying a) and b). Then, the first two rows of Ac are 

linearly independent and their entries can still be expressed as in (7.3.1) and (7.3.2), with nonzero di and nonzero and distinct yj. 

Now, b) implies that every row 
c

ia ,2  ≤ i ≤  k -1, is linearly depended on the first two rows of Ac, i.e., 

,10,12,10 −−+= rjkiaaa c
ji

c
ji

c
ij  For some .0, ii  Define ci=

1−

i and xi=
1−

ii ,2 ≤ i ≤ k-1. Since every 

two rows of Ac are linearly independent, the xi are distinct. 

Lemma 1.4 leads to efficient ways of verifying whether a given  k × n matrix generates a GRS code. Let G1 denote a square matrix 

of order k, and let G = [G1,G2]. The first step in the test of G is to verify that G1 is nonsingular. Then, apply the transformation 

 AIGG =−1

1  and check that A = [aij] satisfies the following two conditions:  

1) the ratios a0j/a1i, 0 ≤ j≤ n-k-1, are all distinct; and  

2) the rows of Ac are pairwise independent and are all spanned by the first two rows of Ac. It can be readily verified that these 

two conditions are equivalent to those of Lemma 6.3.1, together with Theorem7.2.1, implies the following result. 

Theorem 1.5: Let F = GF(q), q even, and let A be a k × r matrix over F with ( )( ).4/511),max( ++−+ qqrk . If all the 

entries of A are nonzero, then A is super regular if and if every 2×2 submatrix of Ac is nonsingular and every 3×3 submatrix of Ac 

is singular.  

5. CONCLUSION 

An (n,k,d) linear code over the finite field F = GF(q) is maximum- distance separable(MDS) if it attains the Singleton bound d ≤ n-

k+1.        A k × n matrix G over F is a generator matrix of an MDS code if and only if all k columns of G are linearly Independent. 

If G is a systematic generator matrix i.e., G = [I,A], I being the identity matrix of order k, and A is a k×(n-k) matrix, then G generates 

an MDS code if and only if every square submatrix of A is nonsingular. Such matrix A will be called superregular. When k = 1, 

there exist arbitrarily long MDS codes, e.g. repetition codes, and when k ≥ q, a code is MDS only if it has minimum distance ≤ 2. 

Therefore, Roth and Lempel(1989) worked only with codes of dimension k, 2 ≤ k ≤ q-1. In this case, it is known that MDS codes 

cannot be arbitrarily long. Let Nmax(k,q), 2 ≤ k ≤ q-1,be the maximal length of any MDS code of dimension k over GF(q).Then,                     

q+1 ≤ Nmax(k,q) ≤   q+k-1. Furthermore, for some special cases of k and q, it can be shown that Nmax(k, q) = q+1. By definition, a 

GRS code with 2 ≤ k ≤ q-1 may be of length at most q+1. For 2 ≤ k ≤ q-1, let Nmin(k,q) be minimal integer, if any, such that every 

[n,k] MDS code over F with n ≥ Nmin(k,q) is GRS; if no such integer exists, Nmin(k,q) = q+2. Clearly, Nmin(2,q) = 2, and so  Nmax(2,q) 

= q+1. To obtain an upper bound on Nmin(k,q) for larger values of k, we make use of the following result. Let C be a GDRS(n+1, k, 

α, v) code defined by α = (α0,α1,  ,αs-1,∞,αs,  ,αn-1) And v = (v0,v1,  ,vs-1,v∞,vs,  ,vn-1), with  k - 1 < s ≤n. Then C has a 

generator matrix of the form [I A ], where  A = [A0,A1,  ,As-k,A∞,As-k+1,  ,An-k+1] is a k×(n+1-k) GEC matrix obtained from 
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the Cauchy matrix A by inserting the column. A∞= d∞(c0,c1,  ,ck-1)T before the (s-k+1)th column of A if s < n, or as the last column 

if s = n. Here d∞ = v∞ and take c0 = c1 = 1.The results of the previous section on MDS codes be expressed in terms of superregular 

matrix with the subclass of Cauhy matrices corresponding to GRS codes. For instance, the analog of Lemma 5 takes the following 

form. Suppose there exist integer s ≥ 1, t ≥ 3 such that every s×t superregular matrix over F = GF(q) is a extended Cauchy matrix. 

Then, for every r ≥ t, each s × r matrix is a superregular matrix if and only if it is a extended Cauchy matrix. 
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