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1. Introduction: 

 As in any branch of Mathematics the aim is how to get new mathematical structure using the existing ones.  Analogously 

in this paper.We introduce new graphs by using minimum dominating sets, switching and partial switching.  

 Switched graphs are a natural extension to ordinary graphs and a natural abstract domain for representing concert problems.  

Many famous graphs are obtained by switching, for example, Shrikhandegraph  is obtained by switching Clebsch graph with respect 

to some vertices.  Also Change graphs which is obtained from triangular graph of order 28; that is  T(8).  We introduce the concept 

of partial switching of a graph, characterization of switched graphs are obtained.  We also obtain some results on switched graphs 

and the relation between partial switching and switching on graphs.  

 In (36) switching is defined as follows: 

Let G = (V, E)  be a graph, for a given partition  = (V1, V2) of a set V we define the switched graph S(G) = (V, E), where  = 

{H, V – H} by setting E =  E11 ((V1 x V2) – E12)  ((V2 x V1) – E21)  E22, where Eij = E  (Vi x Vj).  Sometimes we denote to 

the switched graph S (G) by SH(G). 

If A (G) is adjacency of G then we can write a matrix in block form: 

A(G) = 








2221

1211

AA

AA
 

With  block determined by a partition , 

A(G) =   








−

−

222121

121211

AAJ

AJA
 

Where Jij is |Vi| X |Vj| matrix whose entries are equal to one.  

Definition 1.1. A partition =  (V1, V2) of the vertex set V of a regular graph G is called equitable partition of G, if for any pair (I, 

j)  {1,2} and any vertex   Vi the number mij = |G () Vj | depends only on (i,j) (where G(v) in G adjacent to  ). 

 In this paper we study the switching of some graphs with respect to some subset, particularly dominating set.  

Definition 1.2. Let G = (V, E) be a graph.  For a given partition  = (V1, V2) of a set V.  We define the partial switching graph 

Sp(G) = (
pE ) where  

pE = (V1 x V1) – E11 (V2 x V2) – E22  E12,  where Eij – E  (VixVj). 

Example 1.1. With respect to the lebelling of the following figure 1, we can find the switching and partial switching with respect 

to the partition   = ({2,5}, {1, 3, 4}). 

 
Figure 1 

2.  Elementary Results: 

 Observation 2.1 Let G be a graph and H is a subset of V (G).  then the switching of a graph with respect to H is the same  

as switching of G with respect to V (G) – H = H  . 

That is  

SH (G) = SV-H (G) 

Observation 2.2.  Switching of any graph with respect to the whole vertex set V (G) is isomorphic to the original graph.  

This is  

  SV(G) (G)  G. 

Observation 2.3.  Switching successively with respect to H1 and H2 is the same as switching with respect to the symmetric 

difference  H1 H2, 
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Where H1 H2 = H1 H2 / H1 H2.  That is 

SH2 (SH1 (G)) = SH1 H2 (G).  

Example 2.4.  Let G = C5 as in Figure 2 and H1 = {2,5} and  

H2 = {1}.  Then SH1 (G) is the switching with respect to H1 is shown in Figure 2.  

 
Figure  2 

Now switching the resulting graph with respect to H2 we get SH2 (SH1(G)) which is equal to SH1H2(G) as shown in Figure 3.  

 
Figure 3 

Theorem 2.5. Let G = Kp be a complete graph.  For any vertex  

V(G), S{} (Kp)  K1Kp. 

Proof. Let Kp be a complete graph with p vertices with the vertex  set V(G) with the cardinality p.  Let   be any vertex in the 

complete graph and we make a switching of Kp with respect to {} such that the partition   = ({}, V – {}).  All the edges 

between the {} and V - {} become non edges.  That is {}  is isolated in switched graph that is K1. On the other hand every  

edges in <{}, V – {} > will be as it is.  Since we have (p – 1) vertices in ({} , V - {}) and also edge vertex is joined to all the 

other vertices that is Kp-1. Hence 

 S{} (Kp)  K1Kp. 

Corollary 2.6. For any graph Kp we have, (S{} (Kp)) = 2. 

Observation 2.7.  SH (Wp) = Cp-1,  where H is a minimum dominating set, and so we have,  

(SH (Wp)) = 1 + (p – 1)/3 . 

3. Main Results: 

Proposition 3.1.  For any  graph G = (V, E) and H   V with   = (V1, V2), )(GSH
 SH )(G . 

Proof. Let  )(GSH and  SH )(G  be  two graphs with the same vertices.  

SH (G)  replaces all the edges between V1 and V2 with non-edge and vice versa.  By taking complement of G = (V,E) with respect 

to  . 

)(GSH
replaces all edges and non edgesbetweenV1 and V2 and vice versa to become as original graph.  But edge which lies 

completely inside V1 will be replaced by non-edge and non-edge by edge and also the same of V2. 

Also for the graph  S )(G  we get the same.  

Corollary 3.2. For any self complementary graph,  

 )(GSH  (S )(G ). 

Example 3.3. C3, C5 and Paley graph. 

Theorem 3.4.  Let G be a graph of order p, with H V(G), |H| = m.  Then G is complete bipartite graph Km,n if and only if S (G)H 

is an empty graph or totally disconnected graph.  

Proof.  If G = Km,n and H  V (G), |H| = m, then the S(Km,n) is totally disconnected.  If G is complete bipartite graph Km,n, then the 

switching with respect to any of its partite set is totally disconnected graph.  

Conversely, suppose G is a graph of order m and H V(G),|H| = m.  We prove that G is complete bipartite graph.  Since the 

switching with respect to H is totally disconnected, so that H and V – H are independent on S(G)H and every element on edge is 

adjacent with every element in V – H, implies G is bipartite graph.  

Theorem 3.5.  Let G be a graph.  Then the partial switching of a switching graph with respect to some subset H is isomorphic to 

the complement of a graph G.  That is  

 Sp(S(G)H)H G =  . 

Proof.From the definition of switching and partial switching.  It is clear that the vertices in Sp(S(S)H)H are the same inG  . 

 We prove that the graphs have the same edges.  So we can make a partition for the edges as E11, E12 and E22 where Eij is 

as the same in definition of switching graph. 
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 In the first switching every edge in E11 and E22 will be the same and we replace every edge by non-edge and vice versa.  In 

the graph  Sp(S(G)H)H we get every edge in E11, E22 and E12 replaced edge by non-edge and vice versa, that is any two vertices in 

Sp(S(G)H)H are adjacent if they are non adjacent in G.  Therefore, G  = Sp(S(G)H)H. 

Theorem 3.6.  The partial switching of Km,n with respect to one of the partite set is a complete graph Km+n. 

Proof.  Let G = (V, D1, D2) be a complete bipartite graph.  We prove the theorem by contradiction.  

Let Sp(G)D1 be the partial switching of G with respect to the partite set D1. Suppose Sp(G)D1 is not complete then there exists at 

least two points say u and v are not adjacent, that is u, v  E(Sp(G)D1). i.e.: (u,v)  Eij(G) and this contradicts our assumption that 

G is not complete.  Hence G is complete.  Similarly with the partite set D2. 

Corollary 3.7.  The graph G is complete if and only if G is the partial switching of switching of complete bipartite graph.  

4. Switched Neighbourhood Graphs: 

A subset S of V (G) is a neighbourhood set of G if G = USN(v), where N(v) is the subgraph of G induced by N[v[. The 

neighbourhood number  (G) of G is the minimum cardinality of a neighbourhood set of G.  A subset set S of V is called global 

neighbourhood set of the graph G if it is neighbourhood for both G and G . For more details we refer 40. 

Theorem 4.1.  Let D be a neighbourhood set of a graph G.  Then D is also a neighbourhood set of S(G)D if and onlyif D is global.  

Proof.  To prove that D s also a neighbourhood of S(G)D, we prove  that  S(G)D  = UDN(v), 

The edges on S(G) either belongs to E11, E12 or E22. Let D be a global neighbourhood set of G i.e.; G = N(v) and also G = 

UDN(v), Every edge in E11 and E22 will be covered by D.  (since D is neighbourhood set of G). 

Similarly every edge inside E12 is covered by D (since D is neighbourhood of G  ) 

 Hence every edge on S(G)D will be covered by D.  That is, D is a neighbourhood set of S(G)D. 

Theorem 4.2.  For any graph G,  (Sp(G)D) = 1 if and only if one of the following condition is satisfied: 

(i) D contains an isolated vertex adjacent to every vertex in (V – D); 

(ii) V -D contains an isolated vertex adjacent to every vertex in D. 

Proof. Suppose that (Sp(G)D) = 1 and any one of the above condition is not satisfied.  Then either both D and V -D have no 

isolated  vertex for every isolated vertex adjacent to every vertex in D and D and vice versa.  Thus in any case  (Sp(G)D) n -2  and 

hence (Sp(G)D)  2 this contradicts.  

Conversely, suppose the two conditions are satisfied.  Then clearly there exists a vertex of degree (n-1) which covers all the edges  

in (Sp(G)D). Hence (Sp(G)D) =1. 

Theorem 4.3.  For any independent neighbourhood set D of a graph G. (G) =  (S(G)D). 

Proof.  Let G be a graph and D be a neighbourhood set of G, and v be a vertex in D then all the points N(v) are in (V – D), since D 

is independent neighbourhood set.  So every element in (V – D) is adjacent to some element in V.  That is D is global neighbourhood 

set for G.  Hence by Theorem (3.5) 

(G) =  (S(G)D). 

SOME SWITCHED GRAPHS 

 Some switched graphs with respect to the minimum dominating sets are not isomorphic.  

Example 5.1 

 
Figure 4 

Some switched graphs for example if we suppose G = C5, as labelled in the figure 5, with the minimum dominating sets {1,4}, 

{2,4}, {2,5}, {1,3} and {3,5} are isomorphic.  

Example 5.2. 

 
Figure 5 

Switching with respect to {2,5} we have switching graph and partial switching as in figure 6. 
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Figure  6 

Switching with respect to {1,4} we have switching graph and partial switching as in figure 7. 

 
Figure - 7 

Switching with respect to {1,3} we have switching graph and partial switching as in figure 8 

 
Figure 8 

Switching with respect to {2, 4} we have switching graph and partial switching as in figure 9.  

 
Figure 9 

Switching with respect to {3, 5}we have switching graph and partial switching as in figure 21.  

 
Figure 10 

Let G = (V, E) be a graph for given partition =  (V1, V2) of set V.  We define the various partial switching graphs as follows: 

(1). The partial switching Sp1(G) = (V, 1p
E ), with = 1p

E = E11 U E12 U    ((V2  x V2) – E22, (where Eij – E  (Vi x Vj). 

Example 5.3.  Let G be a graphs in Figure 112, and the partial switched graph with respect to  = {1,5} 

 
Figure  11 
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2) The partial switching Sp2 (G) = (V1
2p

E ), with 2p
E  = E11 E22   (V1 x V2) – E12), where Eij = E  (Vi x Vj). 

Example 5.4.  Let G be a graph as in Figure 12, the partial switched graph with respect to  = {1, 5} 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 12 

3) The partial switching  3p
E  = (V,

3p
E ), with 3p

E  = E12 E22 

  (V1 x V1) – E11), where Eij = E  (Vi x Vj). 

Example 5.5.  Let G be a graph as in Figure 24, the  partial switched graph with respect to   = {1,5} 

 
Figure 13 

4) The partial switching  4p
E  = (V,

4p
E ), with 4p

E  = E11 ( ( V1 x V2)   

(V2 x V2) – E22), where Eij = E  (Vi x Vj). 

Example 5.6.  Let G be a graph as in Figure 13, the  partial switched graph with respect to   = {1,5} 

 
Figure 14 

5) The partial switching  5p
E  = (V,

5p
E ), with 5p

E  = E12 ( ( V1 x V1)   

(V2 x V2) – E22), where Eij = E  (Vi x Vj). 

Example 5.7.  Let G be a graph as in Figure 15, the  partial switched graph with respect to   = {1,5} 

 
Figure 15 

6) The partial switching  6p
E  = (V,

5p
E ), with 6p

E  = E22 ( ( V1 x V1)   

  (V2 x V2) – E11), where Eij = E  (Vi x Vj). 

Example 5.8.  Let G be a graph as in Figure 16, the  partial switched graph with respect to   = {1,5} 

1 

2 

3 4 

5 
1 

2 3 

4 

5 

G Sp2(G) 
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Figure 16 

7) The partial switching  7p
E  = (V,

7p
E ), with 7p

E  = ( V1 x V1) – E11 (V2 x V2)     (V1 x V2) – E12, where Eij = E  (Vi x 

Vj). 

Example 5.9.  Let G be a graph as in Figure 17, the  partial switched graph with respect to   = {1,5} 

 
Figure 17 

Theorem 5.10.  For any graph G = (V, E) and H V(G), 

  SH(SH(G)) = G 

Proof.  Any edge in V(G)  E12 will be non-edge and non edge will be edge.  The other edges are same in E11 and E22 in (SH(G)). 

 Again in SH(SH(G)) any edge in V(G) E12 will be non edge and vice versa.  And the other edges are same in E11 and 

E12, which is isomorphic to G. 

That is   SH(SH(G)) = G 

Example 5.11. 

 

 
Figure 18 b 

Theorem 5.12.  Let G  be a graph G = KrK1. Then SK1(KrK1)  Kr+1 

Proof.  Obviously switching with respect to K1, every vertex in Krwill be adjacent to the single point K1 in the  switched graph of 

SK1(KrK1).  Therefore, SK1(KrK1)  Kr+1. 

 

 

Example 5.13. 

 
Figure 19 

Theorem 5.14. Let G = 2Kr, and S  G for any subset S in any copy of Kr, such that |H| = 1.  Then SH(2Kr) – Kr-1 Kr+1. 

Proof.  Let G = 2 Kr with |H| = 1.  Switching 2Kr with respect to H is equivalent to the graph which can be obtained by deleting one 

point from 2Kr and joining this point to all the vertices of the second copy.  That is  

  SH(2Kr) – Kr-1 Kr+1. 

Example 5.15. 

Fig 18a 
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Figure 20a 

Let |H| =1, then switching with respect to {1}, we get  

 
Figure 20b 

That is  

S{1} (K5 K5) = K4 K6. 

Corollary 5.16. Let G = 2Kr be a graph.  Then (SH(2Kr)) = (SH(2Kr)). 

Theorem 5.17.  Let G = mKr and H is any subset of any copy Kr, such that |H| = t.  Then SH(mKr) = Kr-t (H + (m – 1) Kr). 

Proof.  Let G = mKr be a graph with |H| = t.  Switching mKr with respect to H is equivalent to the graph which can be obtained by 

deleting edges between points inside H and V – H from one copy and joining these points to all the vertices of the remaining (m – 

1) Kr. So we get the graph Kr-t( (H + (m – 1) Kr). 

Hence 

SH(mKr) = Kr-t (H + (m -1) Kr) 

Corollary 5.18. Let G be a graph.  Then (SH(mKr)) =  (SH(mKr)). 

Theorem 5.19. Let H = (V,E) and G = mH such that S   V (H), for any copy then, SS(G) = V-H (S+ (m-1) H). 

Proof.  Suppose G = mH with S V(H) where H = (V,E).  By switching the graph G with respect to a set S, we obtain a graph by 

deleting the edges between S and V-S in one copy of H and joining every vertex of H to every vertex of the remaining copies. That 

is  

 SS(G) = V-H (S+ (m-1)H). 

Corollary 5.20.  Let H = (V, E) and G = mH such that S V(H). Then  (SS(G)) V-S +t. 
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