
ISSN: 2455-2631 November 2022 IJSDR | Volume 7 Issue 11

IJSDR2211163 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 1084

Observations regarding model-based software engineering,

programming culture, and automation
Kumari Jugnu

Assistant Professor Bakhtiyarapur College of Engineering, Bakhtiyarapur

Simranjeet kour

Chandigarh University,Mohali

Mr. Vikash sawan

 Assistant Professor Department of computer science and Engineering

Chandigarh University,Gharuan

Prakash Joshi
joshifcs@rkgit.edu.in

Assistant Professor

Raj kumar Goel Institute of Technology, GZB

Abstract: Model-based software engineering an approach for creating software, differs from more traditional

development methods in part by having significantly higher levels of automation. Using computer-based tools is essential

for many development processes, including authoring support (many MBSE languages are essentially visual), automatic

or semi-automatic verification, the automated translation of requirements into appropriate programmers, and many

more. Given previous examples like the development of compilation technology, there is little doubt that automation, when

properly conceived and implemented, may considerably increase the productivity of software engineers and improve the

quality of their programmers. It becomes fair to assume that MBSE will quickly replace previous software development

methodologies, much too how computer-aided design techniques for hardware were quickly embraced. This, however, has

not taken place. This is an opinion essay based on the author's in-depth understanding of MBSE and its use in business. In

it, we examine the causes of this odd circumstance.

Keywords Model-Driven development Computer-aided software engineering,

 Psychology of programming·Usability·Computerautomation·Softwaretools.

Introduction

 Since the beginning of programming, computers have been used to facilitate the design and development of software. Given that

computers are the ultimate automation machine and the main outputs of the development process are computers themselves that

are stored, modified, and executed, it makes perfect sense.

Software development tasks including compilation, programme linking and loading, source programme generation and editing,

version management, debugging, verification, documentation, and more have all been automated using computers. Compilation is

among them, and it may be the most important in terms of its influence on output and quality. Third-generation languages, often

known as high-level programming languages, were made possible by the development of compilers, which decreased the

complexity of programme design by freeing programmers from having to worry about many technology-specific issues.

This allowed programmes to be specified using ideas and constructs that were much more closely related to human

comprehension and the issue domain, which not only made it easy to port a given programme to a different system with little or

no modification.

These significant advantages were soon acknowledged, and the great majority of practitioners swiftly transitioned from low-level

to high-level language programming. Additionally, as programming grew more approachable, both the number of programmers

and the variety of applications increased.

However, despite countless incremental improvements, the abstraction level provided by popular third-generation programming

languages like C, FORTRAN, or Basic proved insufficient as the need for ever more complex and diversified computer systems

developed.

Contributions to these languages. In particular, it was discovered that these languages' fundamental elements were frequently too

fine-grained to allow the direct and understandable expression of many software applications' more complicated and domain-

specific notions and relationships (i.e., their architecture).

http://www.ijsdr.org/

ISSN: 2455-2631 November 2022 IJSDR | Volume 7 Issue 11

IJSDR2211163 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 1085

This inevitably led to the employment of higher-order1 formalisms, such as finite state machines or entity-relationship structures,

which naturally led to an increase in the level of abstraction of software specifications. (It's important to note that many of these

formalisms were naturally pictorial in nature, as opposed to text descriptions, which are frequently more effective in explaining

certain types of structures and relationships.) Now a common practice in the analysis and design of large software systems, the

use of such higher-level formalisms.

But even though there is a clear parallel between this and the change in abstraction levels that occurred when languages were

upgraded from the second to the third generation, and even though higher-level implementation languages like ROOM (Selic et

al. 1994), Statemate (Harel et al. 1990), or SDL (Ellsberger et al. 1997) have been around for decades, there has not been a

comparable widespread adoption of more contemporary implementation techniques and technologies. This has led to a growing

semantic gap between third-generation programming language-specified software implementations and higher-level formalisms,

which are often used to express software design specifications. Despite the fact that programming languages have advanced

significantly over the past three decades, the fundamental level of abstraction (and, subsequently, the expressiveof the first third-

generation languages is not noticeably bigger than that of the current main implementation languages, such as Java, C++, or C#.

That is to say, it is nearly as challenging to identify the high-level architectural form and important design principles of a Java-

written programme as it would be if the same programme had been written in FORTRAN or COBOL.

It goes without saying that this disparity in abstraction leads to issues that are frequently quite challenging to solve. There is a

clear possibility that mistakes will be introduced during the informal conversion of high-level specifications into programmes,

resulting in an implementation that does not faithfully reflect design intent. On the other side, it is also possible that a high-level

design specification could recommend ineffective and even impractical systems by disregarding important implementation

concerns. Sophisticated software systems are best built through some kind of iterative and incremental approach, in which

analysis, design, and implementation tasks advance either in parallel or cyclically follow each other in short succession. This

reduces the possibility of such errors. Iterating between these notions becomes more challenging the bigger the abstraction gap

between them is.It would seem logical to use computer-based automation to help close the semantic gaps in this process. In

reality, there have been many attempts to include such automation into software development, starting with so-called fourth-

generation languages and continuing with the model-based software engineering used today (MBSE). Examine each in turn. Of

the sinter.

1 Fourth-generation computer languages:

These high-level languages, often known as 4GL, are tailored for a particular application area or function. The Re- port Program

Generator (RPG) language, a declarative language used to produce reports from databases, is an early example of a 4GL

(International Business Machines 1964). When compared to analogous imperative-style systems written in a language like

COBOL, it proved to be extremely effective for its intended purpose and significantly cut down on development time. Numerous

more 4GLs have been developed and successfully used over time, most notably MATLAB (for mathematical and dynamic system

modeling) (Math Works 2008), SQL (for database queries) (Chamberlin and Boyce 1974), and SPSS (for statistical analysis)

(SPSS Inc 2006). The present emphasis on domain-specific (modeling) languages (DSLs) is the most recent illustration of this

tendency. The main disadvantage of 4GLs is their extremely specialized nature, which is also what makes them profitable. These

languages only have a small user base because of their narrow range of use. This typically implies that, in comparison to the far

more prevalent general-purpose programming languages, it is significantly more expensive to provide very advanced automation

support for such languages. The majority of the time, these languages' support tools are either in-house creations made

specifically for the purpose or are offered by a small number of specialised suppliers (often just one). Utilizing internal tools

necessitates allocating development and other resources to tool support. And development—resources that detract from core

business. The cost of tools provided by a small number of vendors, on the other hand, tends to be higher and they frequently come

with a significant risk of either the vendor or the products being discontinued. In addition, highly specialised tools and languages

necessitate specialised education and abilities that are more challenging to acquire on the open market, suggesting higher training

expenses. On the other hand, there are numerous top-notch and interesting development tools that support popular general-

purpose programming languages. Both the open source movement and tool providers with a focus on this type of product generate

and support these tools. These tools are always getting better while becoming more affordable because to competitive pressures

and the charitable goals of open source (many are available for free). Simply said, 4GLs cannot develop into an identical situation

due to economies of scale. (Unfortunately, this is a factor that is frequently disregarded in current talks on the benefits of DSLs.)

2 CASEtools:The unquestionable success of computer-aided design (CAD) tools, which significantly increased hardware

design automation, served as the inspiration for CASE tools. CASE tools are an early attempt to directly convert higher-

level formalisms used in software system analysis and design into similar code—an approach that seems without fault. They

supported the creation of various analysis and design diagrams as well as usually some automated or semi-automatic code

generation from them. Unfortunately, the success of CASE tools was never even near to that of their hardware

counterparts. They are really frequently used as a paradigmatic example of a technology that promised a breakthrough but

fell short.It is important to look into the various factors that contributed to CASE's "failure"2 because they can provide

guidance for any current or future attempts to use computer-based automation to close the gap between design and

implementation.

http://www.ijsdr.org/

ISSN: 2455-2631 November 2022 IJSDR | Volume 7 Issue 11

IJSDR2211163 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 1086

The disparities in quality between design and implementation are one significant barrier. Design, especially in its early stages, is

best done in an environment that is free from restrictions so that ideas can develop without being hindered by formality and

pedantic precision. As a result, the majority of design languages supported by CASE tools tended to provide informal and

imprecise formalisms. While implementation languages must be translated accurately and deterministically into deterministic

programmed code, they are required to be unambiguous and extremely formal. Any computer code produced using such

formalisms was therefore lacking and needed to be completed by programmer-written code, which clarified any confusion and

filled in any implementation-level gaps. Sadly, these severances the official connection between the code and the it was derived

from. By accident or on purpose, the additional code may undermine or even go against the original design objectives. The

automated return to high-level formalism might therefore no longer be possible, the technique known as "round-trip engineering"

has been used in various attempts to solve this issue (RTE). The code is reverse engineered into a corresponding high-level

specification in this approach. But the most typical result of this approach is that the high-level specification gradually degrades

into a graphical representation of the low-level code that is 1:1. 3 In these situations, a large portion of the value derived from a

high-level representation is lost. Additionally, compared to hand-crafted code, the code produced by CASE tools was frequently

either triv- ial (therefore offering developers little real benefit), or of poor quality. Having little to no theoretical knowledge of or

experience with the best ways to produce code from graphical formalisms contributed to this in part. The proliferation of many

high-level formalisms that appeared around the time that CASE tools were being developed was another issue with early CASE

tools. For instance, there were around a hundred published analysis and design languages in the early 1990s (Graham 2001).

Typically, a subset of these would be supported by each CASE tools, although seldom more than a few. Users were compelled

into the vendor lock-in issues that were. In summary, CASE tools simply did not provide enough value to either the design-ers or

the implementers to justify more widespread dedicated use. Most CASE tool vendors disappeared or were absorbed by other

vendors with a broader perspective on model-based software engineering(MBSE).

3 Model-based software engineering(MBSE):

In a way, MBSE is just a development of the CASE methodology. However, since the early days of CASE, there has been a large

context shift, which significantly increases the viability of MBSE. Specifically: The underlying technology has advanced

significantly. This includes, in particular, more potent computing hardware (performance, memory capacity), as well as

improvements in the design of modeling languages (the use of meta-modeling approaches), automated code generation

techniques, and software tooling (the introduction of tool frameworks like Eclipse [Eclipse Foundation 2008]). In generals our

knowledge of the creation and application of modeling languages develops, so does our comprehension of both their

accompanying issues and solutions. (However, it is accurate to remark that MBSE is still a long way from being a discipline of

engineering that is well-established, that is, one that is founded on well-understood scientific and technical foundations.)Unified

Modeling Language (UML) by the Object Management Group (Object Management Group 2007a), which was developed and

widely used, has significantly lessened the issue of the needless abundance of several high-level modeling languages and

notations.

Numerous articles have been written about MBSE and its characteristics (e.g., object Manage- ment Group 2003; Frankel 2003;

Greenfield et al. 2004; Mellor et al. 2004). There is a lot of discussion around meta-modeling, domain-specific modelling

languages, platform-independent models (PIMs), platform-specific models (PSMs), model translations, etc. According to this

source, the central principle of MBSE may be distilled into two key ideas that we have already covered:

Numerous articles have been written about MBSE and its characteristics (e.g., object Manage- ment Group 2003; Frankel 2003;

Greenfield et al. 2004; Mellor et al. 2004). There is a lot of discussion around meta-modeling, domain-specific modelling

languages, platform-independent models (PIMs), platform-specific models (PSMs), model translations, etc. According to this

source, the central principle of MBSE may be distilled into two key ideas that we have already covered:

 Raising of the level of abstraction; that is, raising the level of software specifications even further away from underlying

implementation on technologies(relativeto,say,traditional programming languages)and Raising the degree of computer-based

automation used to bridge the widening gap between design specifications and corresponding implementations.

In most engineering practice, the term “model” is used to denote an abstract representation of some concrete engineering or other

artifact—something that abstracts out uninteresting detail. This could be a mathematical model or a scale model, or some other

type of model, buttonball casuists distinct from the real-world entity that

.However, in the context of MBSE,“model”is often used as a generic to denote any specification expressed using a higher-level

formalism, whether it is an abstraction that omits detail or a fully fledge implementation specification from which a complete

executable program can be auto-generated. This peculiar practice can betrayed to the unique nature of MBSE, in which the final

development artifact can, inprinciple,betheresultofaseriesofincrementalrefinementsofsuccessivehigh-level specifications In the

course of this process, the same language,tools,medium,meth-ods, and expertise can be used throughout, thereby avoiding the

qualitative discontinuities that characterize practically every other form of engineering development. Clearly, such a process, if

properly supported by automation, has a much greater like-lihood of ensuring preservation of the original design intent.

Furthermore, with suit-able computer-automated transforms, it is always possible to reduce a fully-detailed implementations

model into a more abstract form which is easier to comprehend and which makes it easier to detect any unintended dorun

desirable design modifications.

•

http://www.ijsdr.org/

ISSN: 2455-2631 November 2022 IJSDR | Volume 7 Issue 11

IJSDR2211163 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 1087

Notethat,during the early phases of this continuous process, it is use ok the level of precision and formality relatively low,

allowing a freer (and looser) ex-pressionofdesignideas.Astheprocessprogresses,thedegreeofformalityandcon-sistency checking

should be increased correspondingly, until, in the final phases, itis equivalent to the degree of formality associated with

programming languages. This requirement to support progressively increasing levels of formality is one im-portant feature that

distinguishes good model in languages from most programming languages. This same capability also differentiates good MBSE

design tools from traditional programming tools.

4 PragmaticissueswithcomputerautomationinMBSE:

It is evident from the above description that MBSE is not practical without effective computer-based automation .And, although

here renumerousexamplesofsuccessfulapplicationsofMBSEinlargeindustrialsoftwareprojects,real-dusing the current generation of

MBSE tools(cf.WeigertandWeil2006;Nunesetal.2005),and the state of the art of MBSE tools leaves much to be desired. In

particular, it is my opinion that most MBSE tools suffer from a number of serious deficiencies:

Usabilityproblems.Thekeyissuehereistheaccidental5complexityofthesetools.Undoubtedly,the infrastructure required to support

MBSE,with its innovative butun common graphical languages, sophisticated model transforms, automatic code generation

capabilities, etc., isinherentlymorecomplexthantheinfrastructurere-quiredfortraditionaltext-based programming languages It

requires more effort toset up and tune to a particular production environment requires significant effort. However, on top of this

essential complexity, the vast majority of current MBSEtools adds gratuitous complexity and provides mostly token support to

help userscope.Thus, the interface so he set tools a generally not based on any deep study of standard usage patterns or expert

knowledge of human psychology. The typi-cal MBSE design tool of fersitsca pabilities via multiple overlapping categorie so

fmenuitems groupedinunintuitiveways.Inanoftennaiveandsimplisticinterpre-tationo f principles of GUI design ,garnered mostly

through a clearing gather than systematic study, bizarre and confusing icons and graphics abound, suppos-edly providing an

intuitive interface, but more of the achieving the opposite effect. For users, understanding what such a tool can do and how to do

it requires majorexpendituresoftimeandeffort—timeandeffortthatshouldhavebeenmorevalu-ably expended on solving the

application problem at hand. Thus, tools, which are intended to boost productivity,canactuallyreduceit.

Myperceptionfromobservingdevelopmentteamsisthatusabilityisstillasecond-

orderconcerninthedesignofthevastmajorityofsoftwaretools.Itisoftenincorrectly interpreted as merely a matter of providing a

“fancy” user interface.6Therefore, usability experts ,if consulte data ll ,are typically asked to commentanda dvice on the look and

feel of a tool’s interface long a often architecture of a tool has been set .

One promising approach to dealing with this problem might be to use an intel-ligentadaptation approach in which tools

dynamically a themselves and the irinterfaces tousers andt patterns (Magerko2008). This type o fusability approach can be found

ins one game-playing programs,whichstartoff withaba-si cse to capabilitie sand then gradually expose more and more of their

capabilitie susersbecome more sophisticate dandas data is gathered do nurse patterns.

Another manifestation of the lack usability in today’s MBSE tools is their in-adequate support for customization for specific

application domains and environ-ments—thisdespitethepresenceofnumerousconfigurationoptionsfoundinmosttools. However,

these options are typically limited to a set of choices defined by the tool’ designers ,who , a note dearlier ,often have anin

adequate understandin gothe application domainor how the toolis tobe used. Further more,customcon-figuration sarede fine dfor

individual ltoo dependently of other tool s in the same too l chain, making it difficult to ensure consistency of customizations a

cross tools .Interoperability problems. This refers not only to the fact that, despite the exis-tence of model interchange standards

such as XMI (Object Management Group2007b), it is rarely possible to effectively exchange models between equivalent tools

from different vendors,but also to the in ability to exchange models between complementary tools. For example, it may be

required to transfer a model from amodelauthoringtooltoaspecializedanalysistoolwhereitcanbeanalyzedforcer-tain properties

(safety, liveness, performance characteristics, etc.). Unfortunately ,in most cases this transfer is fraught with problems and

requires some interven-tion.Therearetworeasonsforthis.First,theinterchangestandardsthemselvesarenot precise enough to ensure

an accurate model transfer, that is, a transfer with-out loss of key information. There are ambiguities in how a model is

serializedinto a textual form (for transfer) so that it is interpreted correctly and fully in thereceiving tool. Second, the tool vendors

have so far shown little inclination to fixthe problems in the interchange standards. This is not surprising, since they havea vested

interest in keeping their customers bound to their products rather than their competitors’ products .However ,part of the faulthere

lies with the customers themselves, who, although they often complain about this state of affairs, rarely exert significant pressure

on vendors to fix the problem. Until that happens, inter-operability problems will remain.

Scalabilityproblems.The abstraction power of model need most when deal-ing with large and complex systems. As models of

such systems progress throughsuccessive refinements that add more and more detail and, as more and more in-dividuals get

involved in working on the model, the amount of information thatneeds to be maintained increases significantly. A crucial part of

this informationis the internal structural relationships that capture the semantic linkages betweendifferent parts of the model (or

between different models). They are indispensablewhen querying the model (e.g., to assess the impact of a change to the design).

In effect,an MBSE modelisa complexnetwork finter connecte delement sin which more or lesse very things

sconnected(directlyortransitively)toeverythingelse.77Itcanbejustifiablyarguedthatthecomplexityofsemanticlinkagesofasystemisind

ependentofwhetherornotitisspecifiedasamodelorasaprogram.However,intext-basedspecifications,manysemantic.

•

•

•

http://www.ijsdr.org/

ISSN: 2455-2631 November 2022 IJSDR | Volume 7 Issue 11

IJSDR2211163 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 1088

This, of course, makes it extremely difficult to partition such a model into man-ageable units that may evolve in parallel. To get

around this problem many toolsrequire the full model to be loaded before it can be manipulated, which hampers their ability to

deal with large models.

In summary,the tooling problem a bove and the issue so usability in particular present major impediments to a broader application

of MBSE and thus discouragemanywhoareinterestedintakingadvantageofitsbenefits.However,therearesomeadditional factors

related to MBSE that may present even greater hurdles. These are discussed next.

5 OntheinfluenceofprogrammingcultureonMBSE:

“Problems cannot be solved by the same level of thinking hatcreated them.”

(AlbertEinstein)

Vendors of MBSE tools often say that the status quo is the single most significantissue blocking the broader adoption of MBSE in

practice. By this they mean thepervasivecultureandpsychologyoftraditionalprogrammingpractice.

The source of this problem can be traced to the rather unique nature of program-ming and to the type of personality that is attracte

to it. One key element that distin-guishes programming from other forms of engineering design is its lack of physicalimpe

dance.Thatis,programmingprimarilyinvolvesthetransferofideasintoequiv-alent or near-equivalent specifications and does not

require bending, lifting, or oth-erwiseprocessingofphysicalmaterialsnordoesitinvolveprotractedmanufacturingand assembly. The

main ingredient involved in software production is information n .With no appreciable physical effort involved ,the delay from

idea to its realization(in the form of a compiled and executing program) can be in the order of a few minutesif not seconds. This is

quite exceptional in engineering practice, where the prove-in of a designide a typically requires months eveny earsand involves

pain staking and protracted analysis and design.

While this rapid turnaround is an obvious benefit, it does have some important consequences whose effects,on reflection, are not

necessarily positive.One of theseis that it often creates an impatient state of mind that discourages reflection. Theinertia that is

inherent in traditional engineering design, where the time cost of design decision scanbe prohibitive ,necessitates that design be a

highly thorough ands stematically organized process. It requires a deep and lengthy analysis of possibleconsequences of key

design decisions that often leads to better understanding of the issues and more optimal solutions.8Unless strong discipline is

enforced, software design soften by passes this reflective phase;many solutions are hacked by successive minor modifications of

an inadequate initial design concept until the desired out put is finally achieved—usually a highly sub optimalone.

While this lack of what is sometimes called system-level thinking in software isclearly a problem, there is an even deeper issue

lurking behind this unique inertia-lessproperty of software. The ability to conceive designs and have them confirmed by arunning

program in a short interval of time is a particularly satisfying and highly se-ductive experience. For many individuals, the sense of

personal gratification and mas-tery that comes when a program execute successfully is so appealing tha titlea to a kind of

infatuation with programming that can be highly addictive.A commonand unfortunate consequence of this phenomenon is that in

many programmers’ mindsthefocusshiftsfromthesystembeingconstructedtotheprocessofprogramming;a specific manifestation of

the now familiar “the medium is the message” syndrome first described by the philosopher Marshall McLuhan (1964). One

common undesir-able consequence of this is loss of cusre sulting in a nine sufficient understand in go f and concern for the

product being built.Suchindividuals—andIbelievetheyconsti-tuteasignificantproportionofsoftwarepractitioners—identify

themselves primarily by the programming skills that they have mastered (after investing significant timeand effort) and not by the

types of systems that they help construct. Thus, they donot view themselves as, say, financial system experts or embedded

systems experts with that might display ivetingor,for that matter, to to verthe purpose and architecture of the system they are

helping construct. Programming skills, but ,instead ,as Java experts or C++ experts, Linux experts, etc.Their senseis that they are

equally competent to work on any type of system,as long as it takes advantage of their particular technological skills. An analogy

tothis might be someone who is an expert riveter, who can work on any project thatrequires riveting, whether it is an ocean liner,

airplane, or a skyscraper—it does not matter. Generally, one does not expect riveters to advocate newer technologies

So,howdoesthisstandinthewayofgreaterpropagationofMBSEinpractice?

The difficulty lie in that programmer of this type, with little orno in terestinthe end product or its usage, are often unwilling to

switch to new technologies thattakethemoutoftheircomfortzone,evenincaseswheresuchtechnologiesmightbe much better suited to

the problem on hand. Therefore, the combination of new languages and tools required for MBSE are viewed as a threat.It seem

atherironicthat it is these individuals, who work with the most advanced technology ever devised,who are prone to be so highly

conservative. This attitude can be contrasted with theexceptionally rapid adoption of a similar technology (CAD) by hardware

designers ,who, as noted earlier, saw it as an opportunity to build end products much moreeffectively. Compounding this problem

is the sheer number of such classically trainedsoftware professionals, numbering in the millions. This is a significant inertial

massthatwilllikelykeepimpedingbroaderadoptionofMBSE.

6 AdditionalopportunitiesforautomationinMBSE:

In addition to the ability to automate model creation and code generation, MBSE offer so the renticing opportunities to take

advantage of computer-based automation during development. In this section, we briefly discuss two of the most promisingones:

http://www.ijsdr.org/

ISSN: 2455-2631 November 2022 IJSDR | Volume 7 Issue 11

IJSDR2211163 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 1089

Formal computer-based design analysis. The problem of practical formal check-ing of the safety and liveness properties of a

software program has been greatlyhindered by the highly complex nature of the dominant programming languages.The semantics

of these languages are so intricate that their corresponding math-ematical models used in analysis are extremely complex and

invariably lead toscalabilityissues(e.g.,thewell-knownstate-explosionproblem).Theopportunitycreated by MBSE is the possibility

of defining a new generation of computer lan-guages . The senew modeling language scanbe base don less complex formalisms,

such as state machines or Petrinets,which are much more opento formalanaly sisthan programming languages.

Note that this type of computer-assisted analysis can also be extended to ana-lyzing not just the qualitative properties of a design,

such as absence or presenceof deadlocks, but also its quantitative aspects. For example, if a design model isannotated with

suitable performance-related information (e.g., worst case execu-tion times, deadlines, throughput rates, etc.) it is possible to

analyze such a modelusing modern performance analysis techniques (e.g., based on queuing theory) todetermine its time-related

characteristics. This can be achieved by transformingthe original model into a model suited to performance analysis, such as a

queuingmodel, which is then analyzed by a specialized performance analysis tool. Thereare practical examples of the viability of

this approach based on the MARTE pro-file of UML (Object Management Group 2008a, 2008b). Other types of quanti-tative

property analyses are possible as well, including timing analysis, securityanalysis, availability analysis, etc. By automating the

transformations from onetype of model to another and using computer-based analysis techniques, the need for scarceanalys

expertise can be minimize do revene liminated.

Modelsimulation.Theability to translate modeling language specifications into equivalent computer programs means that themo

languages musthavepre-cise semantics. This, in turn, implies that specifications specified in such languages can also be

executable.“Executable”generally means that the specification can ,in principle, be executed on a virtual machine that directly

interprets the modelinglanguage. This ability is important for a number of reasons. The primary one isthat it becomes possible to

do a practical evaluation of the validity of a proposeddesignbyexecutingitonacomputer.

The value of such an evaluation is greater if it is performed on a very abstractversion of the model, before too much effort and

resources are expended on aninappropriate design choice. This in turn implies the ability to execute very high-level, abstract

models; that is, models that have the high-level features that are being evaluated specified sufficiently but little else. Such a

capability is not as complicated to provide a sit might first appear:when anambiguity in thespecifica-tionis encountered, themo

delexecution systemma ask for external(e.g.,human)guidance on how to proceed or it may use certain pre-configured

assumptions of its own.

One interesting and significant side effect of this type of early execution is the confidence boost that a design team getsfrom

seeing something work early in thedevelopment cycle. The value of this cannot be overestimated, particularly whendealing with

sophisticated software architectures, where the initial degree of con-fidence is low. In fact, one of the main reasons why many

practitioners dislikemodelsinfavorofprogrammingisthelackofsuchpositivere-enforcementduringdevelopment. Waiting until the

very end to determine whether or not a design is via bleis not only risky ,it also very

stressful.Havingexecutingversionsofadesignintheearliestphasesofdevelopmentwillbothreduceriskandalleviate the stress.

7 Whatthefutureholds:

Despite all the shortcomings of current tooling, MBSE has proven its viability and value innumerous industrial

applications.However,to trea hits fullpotential, major additional break throughs still ln to happen Inmy view, the sene too ccur in

two principal directions:

1. We need to evolve a systematic theoretical understanding of the various key capa-bilitiesthatare atthecoreof MBSE, such a the

principles of modeling language design, model transformations, code generation, automated verification, and

soon.Atpresent,therearemanyexcellentideasandmethodsintheseareas,contributedbybothindustryandresearch,buttheyarestillnotsuffi

cientlyunderstood.Thus,committing to MBSE in practice still requires a great deal of improvisation, in-

vention,andexperimentationandstillcarrieswithitsignificantrisk.Theobjectivemustbetotransformitintoareliableandwellunderstooden

gineeringdiscipline.

2. Significant improvements must be made in computer-based automation, whichmeans mitigating and overcoming all the technical

challenges described earlier(usability, interoperability, and scalability). Undoubtedly, some of these will be much easier to

achieve once aproper theoretica lfoundationisin place .As forthe cultura lfactor, one canonly hopethat the cumulative effect of

continuing successes of MBSE-based projects will eventually create sufficient critical mass topropel the substantial community

of recalcitrant developers to be more open to thenew technologies. It is my belief that, part of the key here lies in developing

computer-based automation that is elegant and sophisticated without being intimidating. Thepotentialisthere,itistimetouseit.

References:

1. BrooksJr.,F.:TheMythicalMan-Month.Addison-Wesley,Reading(1995).Anniversaryedn.

2. Chamberlin, D.D., Boyce, R.F.: (1974). SEQUEL: a structured English query language. In: Proceedingsof the 1974

ACM SIGFIDET Workshop on Data Description, Access and Control, pp. 249–264 .Association for Computing

Machinery(1974)

3. EclipseFoundation:Eclipsedocumentation.http://www.eclipse.org/documentation/(2008)

•

•

http://www.ijsdr.org/
http://www.eclipse.org/documentation/

ISSN: 2455-2631 November 2022 IJSDR | Volume 7 Issue 11

IJSDR2211163 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR) 1090

4. Ellsberger,J.,etal.:SDL–FormalObject-OrientedLanguageforCommunicatingSystems.PrenticeHall,London(1997)

5. Frankel, D.: Model Driven Architecture – Applying MDA to Enterprise Computing. OMG Press, Indi-anapolis(2003)

6. Graham,I.:Object-OrientedMethods.Addison-

Wesley,London(2001)Greenfield,J.,etal.:SoftwareFactories.Wiley,Indianapolis(2004)

7. Harel,D.,etal.:STATEMATE:aworkingenvironmentforthedevelopmentofcomplexreactivesystems.

8. IEEETransactionsofSoftwareEngineering16(4),403–414(1990)

9. InternationalBusinessMachines(IBM):SystemsreferenceLibrary:ReportProgramGenerator(onDisk)Specifications.http://bi

tsavers.org/pdf/ibm/14xx/C24-3261-1_1401_diskRPG.pdf (1964)

10. Magerko,B.:Adaptationindigitalgames.IEEEComputer41(6),87–89(2008)

11. MathWorks: MATLAB Function Reference.

 http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.html(2008)

12. Mellor,S.,etal.:MDADistilled—PrinciplesofModel-DrivenArchitecture.Addison-Wesley,Boston(2004)

13. Mernik,M.,Heering,J.,Sloane,M.:Whenandhowtodevelopdomain-specificlanguages.ACMCom-putingSurveys37(4),316–

344 (2005)

14. McLuhan,M.:UnderstandingMedia:TheExtensionsofMan.McGraw-Hill,NewYork(1964)

15. Nunes,N.J.,etal.(eds.):Industrytrackpapers.In:UMLModelingLanguagesandApplications–«UML»2004 Satellite

Activities, Lisbon, Portugal, October 2004 (Revised Selected Papers). Lecture NotesinComputerScience,vol.3297,pp.

94–233.Springer(2005)

16. Object Management Group (OMG): MDA Guide, v.1.0.1. OMG document omg/2003-06-01

(2003)ObjectManagementGroup(OMG):UnifiedModelingLanguage(UML)SuperstructureSpecification,

17. v.2.1.2.OMGdocumentformal/07-11-02(2007a)

18. ObjectManagementGroup(OMG):XMLMetadataInterchange(XMI),v.2.1.1.OMGdocumentformal/07-12-01 (2007b)

19. ObjectManagementGroup(OMG):AUMLProfileforMARTE:ModelingandAnalysisofReal-

TimeEmbeddedSystems,v.Beta2.OMGdocumentptc/08-06-09(2008a)

20. Object Management Group (OMG): OMG MARTE Information Day (June 2008b). http://omgmarte.org/Events.htm

21. Selic,B.,etal.:Real-TimeObject-

OrientedModeling.Wiley,NewYork(1994)SPSSInc:SPSS15.0CommandSyntaxReference,ChicagoIL(2006)

22. Weigert,T.,Weil,F.:Practicalexperienceinusingmodel-drivenengineeringtodeveloptrustworthycom-puting systems. In:

Proceedings of the IEEE International Conference on Sensor Networks, Ubiqui-tous,andTrustworthyComputing,

vol.1,pp.208–217,5–7June,2006.

http://www.ijsdr.org/
http://bitsavers.org/pdf/ibm/14xx/C24-3261-1_1401_diskRPG.pdf
http://bitsavers.org/pdf/ibm/14xx/C24-3261-1_1401_diskRPG.pdf
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.html
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.html
http://omgmarte.org/Events.htm
http://omgmarte.org/Events.htm

