An Analysis of Properties in \(L(\text{Open} F_{\sigma}, \text{Open}) \) Functions in Topological Spaces

1Chetan Kumar Sharma and 2Ritu Sharma*

1Associate Professor, Department of Mathematics, Noida International University, G B Nagar, U.P., India
2Teaching Associate, Department of Mathematics, Noida International University, G B Nagar, U.P., India

*Corresponding Author

Abstract: \(D \)-Continuous mappings prompted us to study a new class of functions namely \(L(\text{Open} F_{\sigma}, \text{Open}) \) functions which contains properly the class of totally continuous mappings and is contained in the class of continuous mappings. A few properties of these functions are discussed in this paper.

Keywords: Continuous mappings, Open \(F_{\sigma} \), Inverse image, Domain, Hausdorff space, \(D \)-regular space.

1. Introduction:
According to Noiri and Yuksel [1], [2] define various functions from a topological space \(X \) to another topological space \(Y \) have been introduced so far. These functions are continuous, non-continuous, weak continuous, strong continuous by various authors and researchers from time to time under different designations. A mapping \(f : X \rightarrow Y \) is said to be \(D \)-continuous if inverse image of every open \(F_{\sigma} \) set is open. Hamlett and Jankovic [5] showed that the collection of all open \(F_{\sigma} \) sets in a space constitutes a base for a weaker topology and both the topologies coincide if the space is \(D \)-regular and hence continuous mappings with range space \(D \)-regular constitute a class which is the same as that of \(D \)-continuous mappings defined by Kohli [4] in the same reference, we study here, \(L(\text{Open} F_{\sigma}, \text{Open}) \) functions using the nomenclature for this we have to study \(F_{\sigma} \) sets which share the countable union of closed sets in a topological space. G. Aslim, A. Caksu Guler, and T. Noiri [6] study new functions are obviously a stronger form of continuity by means of open \(F_{\sigma} \) sets which coincides with continuity if the domain space is a \(D \)-regular countable space. Actually in a \(D \)-regular space every open set is union of open \(F_{\sigma} \) sets and countability of the space gives it is countable union of open \(F_{\sigma} \) sets and hence open \(F_{\sigma} \) set it. Thus every open set is open \(F_{\sigma} \) set in a \(D \)-regular countable space.

2. Definitions and Characterizations:

Definition 2.1:
A function \(f : X \rightarrow Y \) is said to be \(L(\text{Open} F_{\sigma}, \text{Open}) \) at \(x \in X \) if for each open set \(V \) containing \(f(x) \) there exists an open \(F_{\sigma} \) set \(U \) containing \(x \), such that \(F(U) \subseteq V \) and \(f \) is called \(L(\text{Open} F_{\sigma}, \text{Open}) \) if it is \(L(\text{Open} F_{\sigma}, \text{Open}) \) at each \(x \) in \(X \).

Theorem 2.1: For a mapping \(f : X \rightarrow Y \), the following are equivalent conditions provided \(X \) is a countable space.

a) \(f \) is \(L(\text{Open} F_{\sigma}, \text{Open}) \)
b) Inverse image of every member of a base is an open \(F_{\sigma} \) set.

Proof: Let \(V \) be a member of a base for \(Y \), and \(x \in f^{-1}(V) \) or. \(x \in V \) so there exists an open \(F_{\sigma} \) set \(U \) containing \(x \) such that \(f(U) \subseteq V \), \(x \in U \subseteq f^{-1}(V) \) thus \(f^{-1}(V) \) is an open \(F_{\sigma} \) set.

Hence \(a \Rightarrow b \)

There is the following porism according to above theorem:

a) Inverse image of every open set is an open \(F_{\sigma} \) set.
b) Inverse image of every closed set is closed \(G_{\delta} \) set.
c) For each \(x \in X \) and each net \((x_{\alpha}), \alpha \in D \) which is eventually, in each open \(F_{\sigma} \) set containing \(x \), the net \(f(x_{\alpha}) \),
\[\alpha \in D \] converges to \(f(x) \)

d) For each \(x \in X \) and each filter base \(\beta \in B_\alpha \), for which each open \(F_\sigma \) set \(V \) there exists \(B_\beta \in \beta \) such that \(B_\beta \subset V \), \(f(\beta) \) converges to \(f(x) \)

3. Comparison and analysis of the Properties:

According to Yüksel, Açıkgoz and Noiri [13] define that every cl-open set is \(F_\sigma \), so every totally continuous [5] function is \(L(\text{Open}F_\sigma, \text{Open}) \) but the converse is not true.

1. The identity map on \((R, U)\), the real line is \(L(\text{Open}F_\sigma, \text{Open}) \) but not totally continuous defined by Hitir, and T. Noiri [10], [11] every \(L(\text{Open}F_\sigma, \text{Open}) \) mapping is continuous but the converse is not true as.

2. The identity map on \(X = \{a, b\} \) with \(T = \{\emptyset, \{a\}, \{b\}, \{a, b\}\} \) is super continuous [9] and hence continuous but not \(L(\text{Open}F_\sigma, \text{Open}) \).

E. Hitir, A. Keskin, and T. Noiri [12] show that \(L(\text{Open}F_\sigma, \text{Open}) \) a map is independent of completely continuous mappings and \(\beta \) - continuous mappings.

3. Let \(R \) be the usual space of real’s and \(Y = \{a, b, c, d\} \) with
\[T = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c, d\}\} \]

Define a map \(g : R \rightarrow Y \) by
\[g(x) = \begin{cases}
 a; x < p \\
 b; p < x < q \\
 c; q < x < r \\
 d; x > r
\end{cases} \]

Where \(p, q \) & \(r \) are distinct and real’s, then \(g \) is \(L(\text{Open}F_\sigma, \text{Open}) \) but not \(\beta \) -continuous and hence not completely continuous as shown in [13] nor homeomorphism.

Let \(X = \{a, b, c, d\} \) with \(T = \{\emptyset, \{c\}, \{a, b\}, \{a, b, c, d\}\} \) and \(Y = \{p, q, r\} \) with \(U = \{\emptyset, \{p\}, Y\} \)

Define a mapping \(f : X \rightarrow Y \) by
\[f(x) = \begin{cases}
 f(a) = f(b) = p \\
 f(c) = q \\
 f(d) = r
\end{cases} \]

Then \(f \) is completely continuous, \(\beta \) -continuous but not \(L(\text{Open}F_\sigma, \text{Open}) \) its shows that even a homeomorphism may fail to be \(L(\text{Open}F_\sigma, \text{Open}) \).

4. Basic Properties:

For \(L(\text{Open}F_\sigma, \text{Open}) \) mappings the following theorem has some trivial results.

If \(f : X \rightarrow Y \) and \(g : Y \rightarrow Z \) is

1. Continuous whenever \(f \) is \(D \) – continuous and \(g \) is \(L(\text{Open}F_\sigma, \text{Open}) \) mapping.
2. \(L(\text{Open}F_\sigma, \text{Open}) \) Mapping whenever \(f \) is \(L(\text{Open}F_\sigma, \text{Open}) \) and \(g \) is continuous.
3. Composition of two \(L(\text{Open}F_\sigma, \text{Open}) \) mappings is \(L(\text{Open}F_\sigma, \text{Open}) \) mapping.
4. \(P_a \) \(f : X \rightarrow X_a \) is \(L \) (Open \(F_\sigma \), Open) iff \(f \) is \(L(\text{Open}F_\sigma, \text{Open}) \) where \(P_a \) is \(\alpha \)th projection of the product space onto \(X_a \).
Theorem 4.1 If \(f : X \rightarrow Y \) is a surjection carrying open \(F_\sigma \) (or closed \(G_\delta \)) sets onto open (closed) sets and, \(g : Y \rightarrow Z \) is any mapping such that \(gof \) is \(L(OpenF_\sigma, Open) \) then \(g \) is continuous.

Proof: If \(U \) is an open (or Closed) set in \(Z \), then \((gof)^{-1}U = f^{-1}\{g^{-1}(U)\} \) is open \(F_\sigma \) (or closed \(G_\delta \)) set in \(X \) and, hence \(f^{-1}\{f^{-1}\{g^{-1}(U)\}\} = g^{-1}(U) \) is open (closed) in \(Y \).

Corollary 4.1(1): Let \(f : X \rightarrow Y \) be \(L(OpenF_\sigma, Open) \) and \(A \subseteq X \) If \(G \) is open in \(Y \), then \(f^{-1}(G) \) is open - \(F_\sigma \) in \(X \).

Explanation: Since \(A \) is \(F_\sigma \) in \(B \) so \(A=UB_i \) where each \(B_i \) is closed in \(B \).

Also, \(B_i = X_i \) intersection \(B \) where each \(X_i \) is closed in \(X \).

Thus, \(A \) = union of \(X_i \) intersection, \(B = \bigcup X_i \) intersection \(B \) is a \(F_\sigma \) set in \(X \) being intersection of two \(F_\sigma \) sets.Openness of \(A \) is obvious in \(X \).

Noiri and Umehara [9] notified that if \(A \) is closed \(G_\delta \) set in \(B \) and \(B \) is closed \(G_\delta \) set in \(X \) then \(A \) is closed \(G_\delta \) set in \(X \).

Theorem 4.2 Let \(X = A \) union \(B \), where \(A \) and \(B \) are open \(F_\sigma \) sets in \(X \), and \(f : A \rightarrow Y \), \(g : B \rightarrow Y \) be \(L(OpenF_\sigma, Open) \) functions.

If \(f(x) = g(x) \) for every \(x \) in \(A \cap B \), then \(h : X \rightarrow Y \), defined by

\[
h(x) = \begin{cases}
 f(x) & \text{if } x \in A \\
 g(x) & \text{if } x \in B
\end{cases}
\]

is \(L(OpenF_\sigma, Open) \).

Proof: Since \(h^{-1}(U) = f^{-1}(U) \) union \(g^{-1}(U) \) for every open set \(U \) in \(Y \), therefore \(h^{-1}(U) \) is open is open \(F_\sigma \) as \(f^{-1}(U) \) and \(g^{-1}(U) \) are both open \(F_\sigma \) in open \(F_\sigma \) sets \(A \) and \(B \) respectively and hence the same in \(X \).

Corollary 4.2(1) If \(A \) and \(B \) are closed \(G_\delta \) sets in \(X \), in instead of open \(F_\sigma \) sets, the theorem remains unaltered.

Corollary 4.2(2) If \(X = U \) \((U_\alpha : \alpha \in A) \) where \(U_\alpha \) are open \(F_\sigma \) and pairwise disjoint sets in \(X \), such that \(f_\alpha : U_\alpha \rightarrow Y \) is \(L(OpenF_\sigma, Open) \) for each \(\alpha \).

Then \(h : X \rightarrow Y \) defined by \(h(x) = f_\alpha(x) \) if \(x \in U_\alpha \) is a \(L(OpenF_\sigma, Open) \) Function.

Theorem 4.3 Let \(f \) and \(g \) be \(L(OpenF_\sigma, Open) \) function from a space \(X \) into a \(T_2 \)-space \(Y \) then, \(A = \{ x : f(x) = g(x) \} \) is closed \(G_\delta \) in \(X \), provided \(A \) is Co-countable.

Proof: For each \(x \in X - A \), we can show that the existence of open \(F_\sigma \) set \(G : x \in G \subset X - A \).

Thus, \(X - A \) is countable union of \(F_\sigma \) sets and hence, \(A \) is closed \(G_\delta \).

Condition: If \(f \) and \(g \) agree on a co-countable set \(B \) such that smallest closed \(G_\delta \) set containing \(B \) is \(X \). Then \(f = g \).

A space \(X \) is called \(D \)-regular [14] if for each \(x \in X \) and each open set \(U \) containing \(x \), there exists an open \(F_\sigma \) set \(V \) such that
\[x \in V \subseteq U . \] Obviously, every open set in a \(D \)-regular space is union of open \(F_\sigma \) sets and hence, will be open \(F_\sigma \) itself provided it is countable.

Corollary 4.3(1) Let \((X, T)\) be a topological space, the following statements are equivalent

a. \((X, T)\) is a \(D \)-regular and countable space (i.e., set \(X \) is countable).

b. Every continuous functions \(f \) from \(X \) into a topological space \(Y \) in \(L(\text{Open} F_\sigma, \text{Open}) \) function.

Corollary 4.3(2) The set of fixed points of an \(L(\text{Open} F_\sigma, \text{Open}) \) function on a Hausdorff defined by Ajmal and Kohli \[8,7\] and \(D \)-regular and countable space \(X \) is a closed \(G_\delta \) set, where \(A = \{ x : x \in f(x) \} \) Identity map on \(X \) is obviously \(L(\text{Open} F_\sigma, \text{Open}) \) in view of Continuous functions. Thus \(f \) and identity map are fulfilling so \(A \) is closed \(G_\delta \) set.

5 Conclusion and Future Work:

Every open set is \(F_\sigma \) in a perfectly normal space and a space is perfect if every open (or closed) set is \(F_\sigma \) (or \(G_\delta \) set), so every continuous function from a perfect space is \(L(\text{Open} F_\sigma, \text{Open}) \) introduced a function \(f : X \to Y \) to be \(z \)-continuous if for each \(x \in X \) and each co-zero set \(V \) containing \(f(x) \), there is an open set \(U \) containing \(x \) such that \(f(U) \subseteq V \) for every \(D \)-Continuous function is \(z \)-continuous but the converse fails. We have that every \(z \)-continuous function is a \(D \)-Continuous provider where the range space is normal. Since in a normal space every closed \(G_\delta \) set is a zero set or every open \(F_\sigma \) set is a co-zero set. The following conclusion is trivial:

i. If \(X \) is a countable set and zero-dimensional space then every continuous mapping from \(X \) \(L(\text{Open} F_\sigma, \text{Open}) \)

ii. For each \(\alpha \in I \), let \(f_\alpha : X_\alpha \to Y_\alpha \) be a mapping and let \(f_\alpha : \pi X_\alpha \to \pi Y_\alpha \) be defined as \(f(\alpha \alpha) = f_\alpha (x_\alpha) \) for each \((\alpha \alpha)\) in \(\pi X_\alpha \).

Conflict of Interest:

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References:

