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Abstract : Access to clean drinking water is a key issue for about 40 percent population in developing country. An alarming 

figure has been anticipated to increase water insufficiency by 2030. Holistic approach for water treatment is required, 

especially in remote areas where centralized supply systems are not immediately feasible. Untreated domestic, industrial 

and agricultural wastes are major sources for water pollution. Specifically, the contaminants such as organic pollutants, 

heavy metals, pesticides, personal care product, fuel compounds and pharmaceuticals are emerging problem worldwide. 

Since these compounds bio-accumulate in human body and cause carcinogenic diseases. Biochar (low cost material) has 

reasonable capacity to remove such emerging contaminants from waste water. Biochar can be prepared using easily 

available biomaterials. Other low cost materials mainly remove pathogens and generate carcinogenic byproduct (e.g. 

chlorination). Biochar not only removes chemical, biological and physical contaminants but also uphold the organoleptic 

characteristics of water.  This paper reviews the biochar production, uses and its application for the domestic waste water 

treatment.   
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Introduction 

Contamination of drinking water and its sources by pathogenic organisms, toxic inorganics, radionuclides, and synthetic and 

emerging organic contaminants are public health concerns especially among poor communities [1]. Public health risks and disease 

outbreaks among poor and vulnerable communities are directly proportional to poor sanitation and unsafe drinking water sources[2]. 

Poor and vulnerable people lack investment for installation, operation and management of safe drinking water provision 

technologies. Water-borne diseases resulting from unsafe drinking water and poor sanitation are endemic in developing 

countries.[1][3] 

Recent studies have also reported high concentrations of synthetic and emerging organic contaminants in aquatic systems [4]. 

Synthetic and emerging organic contaminants include persistent and toxic pesticides, pharmaceuticals, drugs, dyes, personal care 

products, endocrine disrupting compounds and carcinogens, which are rarely considered in routine drinking water testing. [5]  

Drinking of untreated contaminated water, which is prevalent in developing countries, constitutes the most significant transfer 

pathway of contaminants from the environment into humans[6]. Water-borne and water-related diseases or infection transmits either 

directly through water infected with pathogens or by vectors whose lifecycles are closely associated with water[7]. Yet efforts to 

provide safe drinking water in the developing world have overlooked water quality aspects, probably due to the high costs for 

analytical equipment and the requisite highly trained personnel[8] 

In 1990, The Millennium Development Goal (MDG) aimed ensuring safe drinking water to those without adequate water and 

sanitation by 2015. But, up to 600 million people, mostly in developing countries, still lack access to safe water (WHO/UNICEF 

2014). Ironically, developing countries, especially those in Africa and parts of Asia which have lagged behind in technological 

advances due to weak scientific research and poor funding,[9] will require a scientific knowledge along with a promising and 

inexpensive technology which can ensure safe drinking water supply. [10]. There are a few selected techniques which are in practice 

for water treatment at small level or domestic scale[11]. But, generally the high cost and maintenance of such household water 

treatment techniques is one of the major challenges[12]. Low-cost water treatment is one effective intervention for safeguarding 

public health and preventing water-borne disease epidemics among poor communities 

Therefore, simplification and cost cutting of such techniques is an important area of research. In this direction, the purification of 

water by biochar is an interesting technique. Literature shows that it is an established method which is used in a variety of separation 

and purification processes[13][14]. Water treatment at domestic level is one of such process where the adsorption based techniques 

have significant implications. Due to its low-cost, presence of surface functional groups, porosity, and moderate surface area, 

biochar has been explored as a filter for waste water treatment   [15] 

Biochar:  Biochar is preferably prepared by Pyrolysis of woody raw material to several hundred degree Centigrade temperature 

under anoxic condition. The properties and yield of biochar depends on the pyrolysis operating condition and raw material 

composition.  Biochar can be modified further in order to make it suitable for wider applicability. Various physical and chemical 

activation methods has been used to alter its structural and physiochemical properties[16]. The pyrolysis process can be divided 

into three subcategories: conventional pyrolysis, fast pyrolysis, and flash pyrolysis.  

Table 1 Different Pyrolysis process 

Methods Temp (°C) Residence time (min) Heating  rate  Major products  
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Conventional/Slow Pyrolysis Medium-high 

400-500 

Long 5-30 mint Low 

10 

Gases 

Char  

Bio-oil ( tar) 

Fast Pyrolysis  Medium-high 

400-500 

Short 

.5-2 Sec 

High 

100 

Bio-oil(thinner) 

Gases 

Char 

Ultrafast/Flash Pyrolysis High 

700-1000 

Very short 

<0.5 sec 

Very high 

>500 

Gases 

Bio-oil 

     

Source information: (Boyt, R., (November 2003), Wood Pyrolysis. Retrieved from Bioenergylists.org 

Temperature has the most significant effect after retention time and heating rate. Normally, when the reaction temperature increased, 

it causes reduction in biochar production, while at the same time, increasing the pyrolysis temperature leads to a drop off of solid 

yield and an increase in both gases and liquid percentages yield. On the other hand, raising the temperature leads to raised ash and 

Biochar percentage, whereas the volatile matter gets reduced. Therefore, biochar with greater quality is obtained at a higher 

temperature. [17]. Increasing the temperature that eventually decreases biochar yield could also be because of major decomposition 

of biomass at elevated temperatures or in the course of secondary decomposition of char residues. 

Uses of Biochar:  

There are many beneficial uses of biochar other than just working in the soil- whether as storage for volatile nutrients, as an 

adsorbent, as energy storage in batteries, as a filter in a sewage plant and as a feed supplement.[18] 

                         Uses of biochar in diverse field                                    References 

     1 Silage Agent  [18]    

     2 Feed Additive/supplement [19]    

     3 Litter Additive  [20]    

  A Animal Farming 4 Slurry Treatment  [21]    

     5 Manure Composting [22][23]    

     6 Waste water in fish farming [24] [25]    

           

 
 

  

     1 Carbon Fertilizer  [26]    

     2 Compost   [19]    

  B Soil conditioner 3 substitute for peat in potting soil   [27]    

     4 Plant Protection  [28]    

     5 Compensatory fertilizer for trace element                                [29][30][31]    

             

     1 Additive   [32][33]    

     2 Soil Remediation  [34][35][34]    

  C Decontamination 3 Soil Substrate[36]      

    4 A Barrier preventing pesticide getting into the surface water[37]  

     5 Treating Pond and Lake water [38][39]    

             

             

  D Bio gas Production 1 Biogas Additive  [40][33]    

     2 Biogas Slurry Treatment 

 

[38]    

             

     1 Active Carbon Filter  [41]    

  E waste water 2 Pre-rinsing additive  [42]    

          

             

     1 insulation  [18]    

  F Building sector 2 Air decontamination     

     3 Humidity Regulation     

             

  G Textile          

             

     1 Controlling Emission [18]    

     2 Room Air Filter      

     3 Carbon Fibres  [43]    

  H other uses 4 Plastics       

     5 Batteries   [44]    
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     6 Cosmetics (Soaps. Skin-creams)    

Biochar application for water purification  
The low-cost water treatment methods such as sand and ceramic filters, solar water disinfection, chlorination and boiling have 

several drawbacks[45]. While sand and ceramic filters are effective in removing suspended solids, turbidity and colour, they have 

limited capacity to remove dissolved chemical contaminants and to some extent pathogenic organisms,[46][47] Conventional 

wastewater treatment processes are ineffective for eliminating the emerging contaminants at trace concentrations[48]. other 

techniques are energy intensive and needs power to maintain water pressure and other functions, like in reverse osmosis, membrane 

separation, photo oxidation, oznolysis [49][50].Significant reductions in water-borne disease after using simple water treatment 

systems such as filtration has been reported As an effective, efficient, and economic approach for water purification. Removal by 

adsorption has several advantages, including use of locally available materials, high efficiency (>90%) and selectivity, cost 

effectiveness, while maintaining the taste and colour[51]. A largely unexploited opportunity is the conversion of agricultural wastes 

(e.g., crop residues) from food production systems into biochar through pyrolysis, and its subsequent use for water treatment [52]. 

Purification by biochar needs no external power requirement. Biochar, a carbon-rich solid formed by pyrolysis of biomass, is an 

emerging low-cost technology which has attracted international research attention [53] However, it is believed that the use of this 

technique can be further encouraged by modification and reducing its running as well as maintenance cost.[38] 

Mechanism of water purification   
When a solution containing adsorbable solute comes into contact with a solid with a highly porous surface structure, there is higher 

concentration of materials at the surface or interface between the two phases, it is called interphase accumulation. The substance 

which is being adsorbed on the surface of another substance is called adsorbate. Whereas, the solid present in bulk, on which it is 

retained is called as an adsorbent. This surface accumulation of adsorbate on adsorbent is called adsorption. The interface may be 

liquid–liquid, liquid–solid, gas–liquid or gas–solid, only liquid–solid adsorption is used in wastewater treatment. Following four 

steps are considered, in which solute (adsorbate) is moved toward the interface layer and attached into adsorbent. (1) Advective 

transport: solute particles are moved from bulk solutions onto immobile film layer by means of Advective flow or axial dispersion 

or diffusion, (2) film transfer: solute particle is penetrated and attached in immobile water film layer, (3) mass transfer: attachment 

of solute particle onto the surface of the adsorbent and finally (4) intraparticle diffusion: Movement of solute into the pores of 

adsorbent 

 

 
Figure 1 mechanism of adsorption on the biochar surface 

So, the pores and high surface area of the biochar effectively uptake and bind the contaminants. All the bonding requirements (be 

they ionic, covalent, or metallic) of the constituent atoms of the material are filled by other atoms in the material. However, atoms 

on the surface of the adsorbent are not wholly surrounded by other adsorbent atoms and therefore can attract adsorbates. The exact 

nature of the bonding depends on the details of the species involved, but the adsorption process is generally classified as 

physisorption (weak Van Der Waals forces, reversible and low enthalpy) and chemisorption (covalent bonding, Ionic bonding, 

irreversible and high enthalpy value). It may also occur due to electrostatic attraction including dipole-dipole interaction. As the 

adsorption progress, equilibrium of adsorption between the solute and adsorbent is attained. The adsorption amount (qe, mmol g−1) 

of the molecules at the equilibrium step is determined according to the following equation:  

𝑞𝑒 =
(𝑐0−𝑐𝑒)

𝑚
 V                 

Where V is the solution volume (L); M is the mass of adsorbents (g); and Co and Ce are the initial and equilibrium adsorbate 

concentrations, respectively. The adsorbents are broadly divided into three classes: (1) Synthetic adsorbent: Various porous 

materials are synthesized in laboratory using different processes, which have high adsorption capacities. Disadvantage is that this 

process of manufacturing is comparatively costly. (2) Natural adsorbent: Natural materials like plant root, leaf and agricultural 

waste are dried, crushed, sieved, again washed with distilled water and used as adsorbent for treatment of real as well as synthetic 

wastewater. This process is cheap, but adsorption capacity is comparatively low. (3) Semi-synthetic adsorbent: Natural materials 

undergo chemical as well as physical activation to develop highly porous surface. The major advantages of this adsorbent include: 

low cost, high efficiency, minimization of chemical or biological sludge, no additional nutrient requirement and regeneration of 

absorbent and possibility of metal recovery. A very brief review of the literature about use of feedstock in adsorbent (biochar) 

development is described below in this perspective.  

 Adsorbent 
surface 

Adsorbate/
Pollutants + 

+ 

+ 

+ + + 

+ 

+ 

+ + 

+ 

+ 

+ 

http://www.ijsdr.org/


ISSN: 2455-2631   October 2022 IJSDR | Volume 7 Issue 10 

IJSDR2210160 www.ijsdr.orgInternational Journal of Scientific Development and Research (IJSDR)  144 

 

Feed Stock used in development of biochar  

In literature, large number of material has been claimed for biochar as adsorbent from plant material. Several parts of the plant have 

been successfully employed as preliminary materials in the production of charcoal. These include empty fruit bunches, fibers and 

shell. These materials are renewable low-value agricultural wastes. Nutshells are preferred precursors In addition to it; most of the 

biochar have been prepared for specific removal of compounds. Therefore, this poses limitation in overall treatment of waste water. 

So, the modification of biochar needs to be discussed and also requires deep analysis emphatically like complexation, ion exchange, 

electrostatic attraction, reduction, chemical precipitation and hydrogen bonding etc.  

Apart from that, waste materials or by products of industrial process can be used. For instance food waste, sewage sludge, biomass 

tires etc. The key benefits of using waste-based precursors would significantly reduce the cost of technology along with the 

valorization of these wastes. 

 

S.NO Feed Stock Removed compounds Reference 

1 Bamboo Bisphenol, 4-nonylphenol [54] 

2 Reed stalk Florefenicol [55] 

3 Municipal sludge Tetracycline [56] 

4 Wood Acid orange 

 

[57] 

5 Camphor leaves Ciprofloxacin [58] 

6 Chicken bone, Chicken feather Tetracycline & fluorescent dye, Cd, 

Pb 

[59][60] 

7 Bagasse Caffeine , Diclofenac [61] 

8 Sewage sludge Cu(II) [62] 

9 Marine macroalgae Phosphate [63] 

10 Douglass fir Aniline & nitrobenzene, benzoic 

acid 

[64] 

12 Herbal medicine waste Tetracycline [65] 

13 Corn stalk Cr(VI) [66] 

14 Coconut, Pine nut & walnut shells Carbazepine, tetracycline [67] 

15 Switch grass Metribuzin [68] 

16 Pine sawdust Sulfamethoxazole [69] 

17 Waste hydro char Tetracycline [70] 

18 Wood chip, Garden wood, Pristine, Phosphate [68] 

19 Rice husk Cd [68] 

20 Rice straw Nitrate, Phosphate and ammonium [71] 

21 Peanut hull, Kitchen waste, Corn straw Pb, Cd [72] 

22 Phoenix tree leaves Cr(vi) [73] 

23 Palm fiber Sulphur di oxide [74] 

24 Coffee ground As(v) [75] 

25 oak wood Cd [76] 

26 Agriculture waste Tetracycline, Pb(II) [77][78] 

27 Apple pomace Ag(I) [79] 

28 Fruit peel Ammonia [80] 

29 Glucose Pharmaceutical [81] 

30 Cocoa pod husk, Corn cob, Rice husk, Palm kernel shell Orthophosphate [82] 

31 Water hyacinth Cr(II) [83] 

32 Pomelo peel Sulphate Ion [84] 

33 Sewage sludge and walnut cell Ammonium and sulfate [85] 

34 Pine tree Cd (II) [86] 

35 Rice straw, Phragmites communis, Sawdust and Egg shell Ammonium NH4
+ [52] 

36 Cow dung Tetracycline [87] 

37 Maize straw 2,2′,4,4′-Tetrabromodiphenyl Ether 

(BDE-47) 

 

[88] 

38 Macauba endocarp U (VI) [89] 

39 Wheat straw 

 

Pb( II) [90] 

40 Taro straw, Corn straw, Cassava straw, Chinese fir straw, 

Banana straw, and Camellia oleifera shell 

Nitrogen, Phosphorus [91] 

 

 

 

 

41 Gingko (Spiraea blumei) leaf, peanut shell, and 

Metasequoia leaf 

Pb, Cu [92] 
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Conclusion  
More efforts should be carried out to study the removal of contaminants by biochar. Based on the above discussions and 

investigations, the future research on the preparation and application of biochar in water treatment can be carried out from following 

aspects. 1) the modification of biochar and its physiochemical properties of should be further studied in future; 2) the removal of 

organic matters and emerging contaminants as well as the adsorption and removal mechanism of organic matters need to be deeply 

explored; 3) research on dealing with the toxic and harmful substances produced during the production should be attached with 

high importance; 4) development of biochar with catalytic degradation activity for organic contaminants in water is another 

interesting research direction. 5) In developing country where forest and agricultural residue traditionally burnt or not used in 

elsewhere should be assessed as an alternative for biochar production. 6) The magnetic biochar may become a research focus and 

gain greater development in the near future. Further, the technology should require lesser skills to make appropriate for poor 

communities.  
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