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Abstract: In this study, we have proposed a new generalization of weibull-gamma frailty model is an expanded version of
the classical frailty model. The conditional survival function given the frailty is directly modeled in this study as opposed to
the standard frailty model, which takes into account modeling of the hazard function. The maximum likelihood technique
is used in a simulation study with the E-M algorithm. Then we can apply the suggested model to kidney infection data.
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1. Introduction
The frailty models in survival analysis presents an extensive overview of the fundamental approaches in the area of frailty model.
Frailty model gives a simple way to introduce unobserved heterogeneity and related into models for survival data. In this model
examine an unobserved random proportionality factor that changes the hazard function of an individual or related individuals.
Various authors are discussed to analyze the frailty model in survival analysis. Beard (1959) presented the first univariate frailty
model and later Vaupel et al. (1979) introduced the frailty term in univariate survival models after Clayton (1978) considerably
promote its applications to multivariate survival data. Hougaard (1986) discussed a class of multivariate failure time distribution
and Kayid et al. (2019) considered a proportional reversed hazards weighted frailty model. Shanubhogue et al. (2017) proposed a
new generalization of weibull-exponential frailty model. Balakrishnan et al. (2018) developed a semi parametric likelihood
inference for Birnbaum Saunders frailty model in the analysis of real life data. Shanubhogue et al. (2019) proposed a new
generalized gamma-exponential frailty model in survival analysis. David (2020) suggested a new correlated inverse Gaussian frailty
model with linear failure rate distribution as a baseline distribution that is the best model for analyzing of kidney infection data.
Balan et al. (2020) studied that frailty models for survival outcomes and implies that how shared frailty is used to modeled positively
dependent outcome in survival data. Alex mota et.al (2021) introduce a weighted Linley frailty model its estimation and application
to lung cancer data. Nagaraj et al. (2022) presented to fit Lindley distribution with four frailty models.
In this study, section 2 we first introduce a normal generalized weibull-gamma frailty model and then we estimated a new
generalized weibull-gamma frailty model and its properties. In section 3, we discussed the maximum likelihood technique is done
with E-M algorithm for estimating the parameters of the proposed model. In section 4, we discussed the simulation study and results.
In section 5, we suggested the fitting of model on data in support of the proposed model. In section 6, we discussed the conclusion
of the proposed model.

2. A New Generalized Weibull-Gamma Frailty Model
The classical and widely used frailty model makes the assumption that a proportional hazards model, which is dependent on the
random effect (frailty) that is, the risk of an increased reliance on an unobservable. The baseline hazard function is multiplicatively
affected random variable  z. In frailty models, the hazard function is proportional to hazard function of the baseline distribution
with constant proportionality as frailty random variablez.

h(t) = zh (1) @
In this frailty model, we consider a conditional survival function given as frailty random variable z with ¢ being unknown parameter,
by which we can extent the present frailty model

h(t) =2"hy (1) (2)
The conditional distribution of T given the frailty z is
ot
f(t/2)=2"hy(t)e™ [hy(u)du ©)
0
Then the hazard function of the weibull distribution can be obtained as
f (t, 4,
ho (t) — 0( 7)
So(t)
hy (@) =4yt (4)

Using equation (4) in equation (3) and we get,

ot
f(t/z)=2z"apt “e‘z"J./lyquu
0
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. t
f(t/z)=2°At He‘zb/lyj u”* du

f(t/z)=2z°At""e l;/t

f(t/z)=2"at" ™" ®)
Mean of the above model in equation (5)

E(T/2)= [t f (/)

E(T/z)=jtz5lt7‘1e‘zw dt
0

E(T/2)=2°Af e dt
0

1

2% q YV
E(T/z)= —"ed
(/2 z%!(z%je |

1 1

11 \»% [’*1]*1,
E(T/z)==|— 7 e
(r/2)=2( 5 ) Jar g
E(T/z)= L 1r5+1

¥

7/(25/1)?
Variance of model is given by

E(Tz/z):th f(t/2)dt
0

E(Tz/z)z th 222t e dt
0

E(T?/z)= z%]ot”“ e dt
0

o
0
5 2
I3l o
0
gw
=r/e)- (1)71“ ¢ ©
0

Using gamma function to above equation (6), we get
2

:1(%yl‘g+l
y\z°4 /4
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E ~dq
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2

r—+1
E(T2/2)=
y(2°A)
2
2 2
Variance = E(T—J—[E(T—D
YA YA
2
T FE+1 F1+1
Vi—|= ! 2 ! 1

y(2°2)7 | y(2°2)7

2
V(Ij=#2 FE+1— F1+1
z L7 /4
2
Fg+1— F1+1J

T
Z =
5
y(z°A)"
The gamma distribution with two parameters is considered as frailty distribution with ¢ > 0 and assumes that mean E(z) =1

and variance g(z) the varianceV (g(z)) = A it can be estimated from real life data.

lk k-1.,-1t
g(Z):T, t>0, 4,k>0 (7)
Then the joint distribution of t and z is
f(t,z)=2h, (t)S( jg(z) (8)
st /ka —1 At
ft,z)=zApt" e —————
(t.z)=2"% -
S ak+l, 4 k+r—2  —(2°t7 +t) 2
F(t,2,4,8,7,k)= 2271 er 9)
Hence, the marginal distribution of T is
ft)=h (t)S( jg(z)dz (10)
f(t) = /17/'[ 7 T 5g2"AV Jk pklg-it
0
k+1 K+r— 2 -1 ® y
f (t) A ]/t J‘Z 264t (ll)

Solving equation (10) and we get,

1

‘ 5
Put Z°At" =P =z= P
At

Sz At’dz =dp

2°7 At dz = Edp
1)

}/ﬂtyl]jzzgl 2 247 K la gy

f(t) =
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f(t)=+— e At e —
() J( ] S

At
k-2 7k y—At © 1
f(t)_%jpé *dp
STk(At7)? ©
yte2 ke [£+1j_1
ft)="—"— [P e"dp
STk(At")e ©
k=2 nk o—At
f(t)er% 1
STk(At7)?
1 1
o) et 1
f(t) = ) (12)

oTk
And the conditional distribution of z given T=t is

( /t) 9(2)5(2)

()
f(t2)
fz/t)=— A (13)
flap)- 22t 0 14)
s

Estimates of mean with frailty (E(Twr)), 6=0 and without frailty (E(Twor), 670 are given by
1 1
E(l'wf ) = TF(; +1J
vz’ A

(1
E(T,, )= /171"(— +1]
y

The above estimates depend on the parameters with and without frailty respectively.

3. Maximum Likelihood Estimation
In this section we will obtain the maximum likelihood estimates of the parameters of weibull — gamma frailty model using EM
algorithm then the likelihood function for the weibull gamma farilty model is defined as

L- H f(t,2)
ﬂkﬂ t k+r-2 7(1- t» A=A

LZH Tk

i=1

(/»Lkﬂ ] ﬁz tk+r 2 (2%t A-At,
J+ZIogz +Z k +y—2)logt, +Z(z t—t)ﬂ(Zz t, ] ﬂzn:ti (15)

logL =n(k+1)log A+nlogy —nlogTk +52Iog z, +(k +;/—2)Zlogti +ﬂ,22i‘5ti -A>t  (16)
i=1 i=1 i=1 i=1

logL=n Iog(
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Taking partial derivatives of the estimates &, 4, K, » in equation (16), we get

alggl' =>logz; + Y.z, log z;t,’ 17)
i= i=1
On simplification we get,

n(k +1)—;biti =0

i=1

n(k +1)—/1iti

j e
24
i=1
a'glf L_ nlogﬂ—r—rL‘P(k)+Zlogti (8)
i=1
OlogL =25 S logt, + 4> 2t/ logt, (19)
67/ Y = i=1

We use Newton-Raphson method, Further we use EM algorithm as z is unobservable. This method is used to predict the frailties.
The frailty Z; is predicted by

z, = E(z/t)
E(z/t)= Tz f(z/t)dz

l+l l+r
© < < —29t7
2.2°0° t9 e "MS

E(z/t):j 1 dz

0 r=+1

o

l+1 l+r

5 45 @ )
E(Z/t):ﬂf—é‘jz&ﬂe_zmwdz
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Fg+1
E(e/t)=——— (20)
w)a(r5+1j

The E step algorithm requires the estimation of E(T/z) and E(In(T%z))

E(Inz/t)= Tln zf (z/t)dz

. i+l 1-*—r 5
0 518 S -2°0t7
E(Inz/t)=j(In 2) 24 1t ¢ Oy
0 r—+1
o

= —+r
lb‘ t6 500 _793¢7
—jlnzz5e 2t dz

r—+1 o
o

E(Inz/t)=

1

o) 0T G e

r—+1o
o

S

E(Inz/t)= 5(F1; +1j;|jln(;y j \(p)ée‘pdp

4. Data Analysis
The data reported by McGilchrist et al. (1991), which corresponds to the recurrence time (in days) to infection, at the point
of insertion of the catheter, for kidney patients using portable equipment. The data consisting of recurrence time (in days) for 38
patients is given in table 1.
Table 1. Recurrence Time to Infection Data

Patient Recurrence Event Patient Recurrence Event

Number Time Type Number Time Type
1 8,16 11 20 15,108 1,0
2 23,13 1,0 21 152,562 1,1
3 22,28 11 22 402,24 1,0
4 447,318 11 23 13,66 1,1
5 30,12 11 24 39,46 1,0
6 24,245 11 25 12,40 1,1
7 7,9 11 26 113,201 0,1
8 511,30 11 27 132,156 1,1
9 53,196 11 28 34,30 1,1
10 15,154 11 29 2,25 1,1
11 7,333 11 30 130,26 1,1
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12 141,8 1,0 31 27,58 11
13 96,38 11 32 5,43 0,1
14 149,70 0,0 33 152,30 11
15 536,25 1,0 34 190,5 1,0
16 17,4 1,0 35 119,8 11
17 185,177 11 36 54,16 0,0
18 292,114 11 37 6,78 0,1
19 22,159 0,0 38 63,8 1,0

5. Fitting of the Model
In this section, we consider only uncensored observations from the data on recurrence time to infection, at the point of insertion of
the catheter, for kidney patients using portable dialysis equipment. In each and every patients have two recurrence time, it is assumed
to be independent and describes 1 is uncensored (infection occurs) and 0 is censored (infection not occurs).
Then we will estimate the parameters with help of E-M algorithm implemented by writing an R program. The estimated value of
the parameter for the model is given in table 2.

Table 2. Estimates of the Parameters

Models Parameter Estimated Value
0.9559351
y) (168.7459705)
With Frailty 0.5835266
5 (1620.6314155)
0.0010000
V4 (0.2446828)
1.02355084
y) (23.67108004)
Without Frailty 0.07526868
) (1570.6314155)
0.00100000
V4 (0.22629419

6. Conclusion
In this paper, we introduced a new frailty model named as a new generalized weibull gamma- frailty model. The weibull distribution
has been used in the frailty model as a baseline distribution to obtain a new survival model for the analysis of data. Meanwhile, we
obtain the new frailty model by considering the gamma distribution as the model by assuming the mean is equal to 1. The model
parameters have been estimated by using EM algorithm and the values are given in table 2. Moreover, the goodness of fit of both
frailty models has been examined by using real life data.
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