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Abstract: In OFDM multiple carriers’ square measure used and it provides higher level of spectral potency as compared to 

Frequency Division Multiplexing (FDM). In OFDM as a result of loss of orthogonality between the subcarriers there's repose 

carriers put downference: Inter carrier Interference (ICI) and inter symbol interference (ISI) and to beat this downside use 

of cyclic prefixing (CP) is needed, that uses two hundredth of obtainable information measure. Comparison between typical 

and traditional standard} FFT/DCT based mostly} OFDM systems with DWT based OFDM system are created in line with 

some conventional and non-conventional modulation ways over AWGN. The ripple families are used and compared with 

FFT/DCT {mostly based or based mostly primarily based mostly} OFDM system and located that DWT based OFDM 

system is best than FFT/DCT based OFDM system with regards to the bit error rate (BER) performance. 

 

Index terms - MIMO - OFDM – Multi input and multi output orthogonal Frequency Division Multiplexing, AWGN – 

Adaptive White Gaussian Noise, CP – Cyclic prefixing, Channel Estimation, DWT- Discrete Wavelet Transform, BER – Bit 

Error Rate  

 

I. INTRODUCTION 

Digital communications systems require each channel to operate at a specific frequency and with a specific bandwidth. In 

fact, communication systems have evolved so that the largest amount of data can be communicated through a finite frequency range. 

In this document we will focus on the recent evolution of communications systems into using various mechanisms for effectively 

using the frequency spectrum. More specifically, we will describe how frequency division multiplexing (FDM) and orthogonal 

frequency division multiplexing (OFDM) are able to effectively utilize the frequency spectrum. In addition, we will distinguish the 

two and describe why OFDM systems are currently being implemented in some of the newest and most advanced communications 

systems 

OFDM is a subset of frequency division multiplexing in which a single channel utilizes multiple sub-carriers on adjacent 

frequencies. In addition the sub-carriers in an OFDM system are overlapping to maximize spectral efficiency. Ordinarily, 

overlapping adjacent channels can interfere with one another. However, sub-carriers in an OFDM system are precisely orthogonal 

to one another. Thus, they are able to overlap without interfering. As a result, OFDM systems are able to maximize spectral 

efficiency without causing adjacent channel interference. The frequency domain of an OFDM system is represented in the diagram 

below. 

 
Figure 1 channel separation 

 

Notice above that there are seven sub-carriers for each individual channel. Because the symbol rate increases as the channel 

bandwidth increases, this implementation allows for a greater data throughput than with an FDM system. 

 Each subcarrier carries one bit of information (N bits total) by its presence or absence in the output spectrum. The frequency 

of each subcarrier is selected to form an orthogonal signal set, and these frequencies are known at the receiver. Note that the output 

is updated at a periodic interval T that forms the symbol period as well as the time boundary for orthogonality. Figure 4 shows the 

resultant frequency spectrum. In the frequency domain, the resulting sin function side lobes produce overlapping spectra. The 

individual peaks of sub bands all line up with the zero crossings of the other sub bands. This overlap of spectral energy does not 

interfere with the system’s ability to recover the original signal.  The receiver multiplies (i.e., correlates) the incoming signal by the 

known set of sinusoids to produce the original set of bits sent. The digital implementation of an OFDM system will enhance these 

simple principles and permit more complex modulation. 

II. PILLOT ALLOCATION OF MIMO-OFDM SYSTEM FOR CHANNEL ESTIMATION USING WAVELET 

TRANSFORM 
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Algorithm 

step 1: Mother function 

Let )(x be some mother function. The )2( x  is the same function compressed by a factor of 2. Binary compression can 

therefore be denoted as )2( xj

j   . 

step2: Wavelet functions 

From the mother or scaling function and the coefficients we construct wavelet functions  )(x . 

)2()1()( kxcx kM

k

k      

step3: Multi Resolution Analysis (MRA) 

Although we have quite general definitions for jk  and jk  we need only use the j=0 level over and over again. This was a 

discovery by Mallet. 

Here is the technique: 

1) Multiply each a pair of input coefficients with the mother function coefficients on the top line and the wavelet coefficients in 

the bottom line. 

  Ex: For the non-reversible Haar transform this is  














































































2

4

2

6

3

5

1

5

1

3

2

4

1

4

2

3

11

11


  

































w

m

w

m

w

m

w

m  

2) Now sort (an effective permutation) the above column matrix and bring all the mother generated coefficients to the top. 
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3) Now  repeat step 2 only on the coefficients labelled ‘m’  
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4) repeat step 2) and 3) until only the top coefficient has the ‘m’ label.  

The Haar Transform 

The Haar Function 

The family of N Haar functions hk(t) are defined on the interval 0 ≤ t ≤ 1 Error! Reference source not found.. The 

shape of the Haar function, of an index k, is determined by two parameters: p and q, where  

k = 2𝑝 + 𝑞 − 1       and k is in a range of k = 0, 1, 2,⋯ , N − 1. 

When k = 0, the Haar function is defined as a constant ℎ0(t) = 1/√𝑁; when k > 0, the Haar function is defined as 

ℎ𝑘(t) =
1

√𝑁
{

2𝑝/2 (𝑞 − 1)/2𝑝 ≤ 𝑡 < (𝑞 − 0.5)/2𝑝

−2𝑝/2 (𝑞 − 0.5)/2𝑝 ≤ 𝑡 < 𝑞/2𝑝

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

From the above equation, one can see that p determines the amplitude and width of the non-zero part of the function, while q 

determines the position of the non-zero part of the Haar function. 

The Haar Matrix 

The discrete Haar functions formed the basis of the Haar matrix H  

𝐇2N = [
𝐇N ⊗ [1,1]

𝐈N ⊗ [1,−1]
]𝐇(0) = 1 

where  
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𝐈𝑁 =

[
 
 
 
 
1 0 ⋯ 0 0
0 1 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 1 0
0 0 ⋯ 0 1]

 
 
 
 

 

 

The Kronecker product of 𝑨 ⊗ 𝐵, where 𝐴 is an m × n matrix and 𝑩 is a p × q matrix, is expressed as 

𝑨 ⊗ 𝑩 = [
𝑎11𝐵 ⋯ 𝑎1𝑛𝐵

⋮ ⋱ ⋮
𝑎𝑚1𝐵 ⋯ 𝑎𝑚𝑛𝐵

] 

When N = 2𝑛 

𝐇N =

[
 
 
 
 
 
 
 
 
 

ϕ
h0,0

h1,0

h1,1

⋮
hk−1,0

hk−1,1

⋮
hk−1,2k−1−1]

 
 
 
 
 
 
 
 
 

 

 

The Haar matrix is real and orthogonal, i.e.,  

 𝐇 = 𝐇∗ 

 𝐇−𝟏 = 𝐇𝑇, i.e., 𝐇𝑇𝐇 = 𝐈 
 

An un-normalized 8-point Haar matrix 𝐇𝟖 is shown below Error! Reference source not found. 

𝐇[𝑚, 𝑛] =

[
 
 
 
 
 
 
 
1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1]

 
 
 
 
 
 
 

 

 

From the definition of the Haar matrix H, one can observe that, unlike the Fourier transform, H matrix has only real element (i.e., 

1, -1 or 0) and is non-symmetric.  

The first row of H matrix measures the average value, and the second row H matrix measures a low frequency component 

of the input vector. The next two rows are sensitive to the first and second half of the input vector respectively, which corresponds 

to moderate frequency components. The remaining four rows are sensitive to the four section of the input vector, which corresponds 

to high frequency components.The Haar function at each row of H matrix. Notice the width and location of the Haar function is 

changed. The Haar function with narrower width is responsible for analysing the higher frequency content of the input signal. 

 
Figure 2. Haar functions for composing 8-point Haar transform matrix. 

The inverse 2k-point Haar matrix is described as𝐇-1 = 𝐇TD Error! Reference source not found. 

𝐃[𝑚, 𝑛] = 0     𝑖𝑓 𝑚 ≠ 𝑛𝐃[0,0] = 2−𝑘𝐃[1,1] = 2−𝑘𝐃[n, n] = 2−𝑘+𝑝     𝑖𝑓 2𝑝 < 𝑛 < 2𝑝+1 

For k = 3, un-normalised inverse 8-points Haar transform. 
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𝐃 =

[
 
 
 
 
 
 
 
 
1/8 0 0 0 0 0 0 0
0 1/8 0 0 0 0 0 0
0 0 1/4 0 0 0 0 0
0 0 0 1/4 0 0 0 0
0 0 0 0 1/2 0 0 0
0 0 0 0 0 1/2 0 0
0 0 0 0 0 0 1/2 0
0 0 0 0 0 0 0 1/2]

 
 
 
 
 
 
 
 

 

 

The Haar Transform function 

HT𝑛(𝑓) of an N-input function X𝑛(𝑓) is the 2𝑛 element vector 

HT𝑛(𝑓) = 𝐇𝑛X𝑛(𝑓) 

The Haar transform cross multiplies a function with Haar matrix that contains Haar functions with different width at different 

location.  

For example: 

𝐈𝑵

[
 
 
 
 
 
 
 
1.2
1.2
1.8
0.8
2
2

1.9
2.1]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

13
−3

−0.2
0
0
1
0

−0.2]
 
 
 
 
 
 
 

 

The Haar transform is performed in levels. At each level, the Haar transform decomposes a discrete signal into two 

components with half of its length: an approximation (or trend) and a detail (or fluctuation) component. The first level of 

approximation 𝒂1 = (𝑎1, 𝑎2, ⋯ , 𝑎𝑁/2) is defined as  

am =
X2m−1 + X2m

√2
 

for m = 1,2,3,⋯ , N/2, where  is the input signal. The multiplication of √2 ensures that the Haar transform preserves the energy 

of the signal. The values of 𝒂1 represents the average of successive pairs of  value. 

The first level detail 𝒅1 = (𝑑1,  𝑑2, ⋯ ,  𝑑𝑁/2)  is defined as  

𝑑𝑚 =
𝑋2𝑚−1 − 𝑋2𝑚

√2
 

for m = 1,2,3,⋯ , N/2. The values represents the difference of successive pairs of  value. 

The first level Haar transform is achieved by 

X =
a1 + d1

√2
,
a1 − d1

√2
,⋯ ,

aN/2 + dN/2

√2
,
aN/2 − dN/2

√2
 

The successive level of Haar transform, the approximation and detail component are calculate in the same way, except that 

these two components are calculated from the previous approximation component only. 

𝒂1 = √2(5, 9,11,3) 

𝒅1 = √2(−1,−1, 2, 0) 

𝒂2 = (14, 14) 

𝒅1 = (−4, 8) 

III. SIMULATION RESULTS  

BERPERFORMANCE EVALUATION 

By victimization MATLAB performance characteristic of DFT {based| based mostly| primarily based mostly} OFDM and 

riffle based OFDM area unit obtained for various modulations that area unit used for the LTE, as shown in figures. Modulations 

that might be used for LTE area unit QPSK, sixteen QAM and sixty four QAM (Uplink and downlink).  

 
Figure 3 Comparison Analysis of DFT Vs DCT Vs. DWT Process Using 64QAM 
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Figure 4. Comparison Analysis of DFT Vs DCT Vs. DWT Process Using 128QAM 

 

 
Figure 5. Comparison Analysis of DFT Vs DCT Vs. DWT Process Using 256QAM 

IV. CONCLUSION  

A tendency to analyzed the performance of rippling based mostly OFDM system and compared it with the performance of 

DFT based mostly OFDM system. From the performance curve wave got determined that the BER curves obtained from rippling 

{based mostly primarily based mostly} OFDM are higher than that of DFT based OFDM. We have a tendency to used 3 modulation 

techniques for implementation that are QPSK, 16QAM and 64 QAM, that are employed in LTE. In rippling based mostly OFDM 

differing types of filters may be used with the assistance of various wavelets out there.  
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