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1. INTROOUCTION 

 In order to construct fixed-range confidence interval for a normal mean, assuming the variance to be unknown, Hall 

[3](1983) proposed an accelerated' sequential Procedure  which combines the rates of two-stage and purely sequential 

procedures and also  is  more flexible in nature because the number of sampling stages can be reduced only by 

introducing finite number of observations .Several other experimenters have also developed and studied the same for 

other distributions also. 

In the present Chapter, we develop the classes of 'accelerated' sequential procedures to construct fixed size confidence 

region for the parameter 𝜃 for the bounded risk point estimation. The set up [2] of the problem is: 

𝐗1, … , 𝐗𝑛  be a random sample of size 𝑛(⩾ 𝑡 + 1,from a t variate continuous population, with parameter  𝜃 of order 

𝑡 × 1 of interest and Ψ  a scalar unknown parameter, let (θ′, Ψ)′ ∈ 𝑅𝑡 × 𝑅+. The estimators of 𝜃 and Ψ are  θ̂𝑛 =

θ̂(𝐗1, … , 𝐗𝑛) and Ψ̂𝑛 = Ψ̂(𝐗1, … , 𝐗𝑛) . The following   hypotheticals are made  

 (A,): A known positive definite matrix 𝑄,  of order t by t, a number 𝛿 ∈ (0,1] and a positive   integer 𝑟 ≥ 1  exist ,s . 

.t. 𝑛[𝜓−1(θ𝑛 − 𝜃)′𝑄(𝜃𝑛 − 𝜃)]δ ∼ 𝜒(𝑟)
2  

(A2) : 𝜃̂𝑛 and Ψ̂𝑛 are   independent for all values of n. 

(A3) : For integers 𝑠(⩾ 1)  ,then for all n greater than or equal to s+1, 

𝑟(𝑛 − 𝑠)Ψ̂𝑛/Ψ = ∑𝑗=1
𝑛−𝑠  𝑍𝑗

(𝑟)
  

where 𝑍𝑗
(𝑟)

 's are iid rv's with 𝑍𝑗
(𝑟)

∼ 𝜒(𝑟)
2 .[2] 

(𝐴4): Ψ̂𝑛 is a consistent estimator of 𝜓. 

For specified 𝑑(> 0) and 𝛿 ∈ (0,1] to construct a confidence region 𝑅𝑛 (which may be interval, ellipsoidal or spherical) 

for 𝜃, of maximum width  2 d and 𝑃(𝜃 ∈ 𝑅𝑛) ≥ 𝛼. We define  

𝑅𝑛 = [𝑧: {(𝜃̂𝑛 − 𝑧) ⋅ 𝑄(𝜃̂𝑛 − 𝑧)}
𝛿

≤ 𝑎2] … … … … … … … …  (1.1) 

 when 𝑡 ≥ 2, for 𝛿 = 1, 𝑅𝑛 is an ellipsoidal confidence region and for 𝛿 = 1, 𝑄 = 𝐼txt , 𝑅𝑛 reduces to 

a spherical region. Moreover, for 𝑡 = 𝛿 = 1 and 𝑙 = 𝐼1×1 = 1, since 

𝑃(𝜃 ∈ 𝑅𝑛) ≡ 𝑃{|𝜃̂𝑛 − 𝜃| < 𝑑2} = 𝑝 {(𝜃̂𝑛 − 𝜃)
2

≤ 𝑑2}, 
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the results based on the region (1.1) are same as those based on a confidence interval of width 2𝑑. 

Denoting by 𝐺(𝑟)(.), cdf of a 𝑋(𝑟)2(Chi square )random variable ⋅ and utilizing (𝐴1), we obtain from (1.1) 

𝑃(𝜃 ∈ 𝑅𝑛)  = 𝑃 [{(𝜃̂𝑛 − 𝜃)
′
𝑄(𝜃̂− − 𝜃)}

𝛿
≤ 𝑑2]

 = 𝑝[𝑋(𝑟)
2 ≤ 𝑛𝜓−1𝑑2]

 = 𝐺(𝑟)(𝑛𝜓−1𝑑2) − − − − − − − − − − − − − − − − − − − − − − − − − − − (1.2)

 

Let 'a' be the constant satisfying the relation 

𝐺(𝑟)(𝑎2) = 𝛼…………… (1.3) 

Using monotonicity property of distribution function, it follows from (1.2) and (1.3) that, for known 𝜓; In order to 

achleve 𝑃(𝜃 ∈ 𝑅𝑛) ≥ 𝛼, the (fixed) sample size required is the smallest positive integer 𝑛 ≥ 𝑛∗,where 

𝑛∗ = (
𝑎

𝑑
)

2

𝜓 

But, in the ignorance of 𝜓, no fixed sample s1ze procedure achieves the goals of pre-assigned width and coverage 

probaibiltty' simultaneously for all values of 𝜓. To meet the requirements, we adopt the following class CA
** of 

“accelerated “sequential procedures. 

Start with a sample of size 𝑚 ≥ 𝑚𝑎𝑥 ⋅ {𝑡 + 1, 𝑠 + 1}  , 𝑠𝑜 𝑎𝑠 𝑡𝑜  satisfy 𝑚 = 𝑜(𝑑−2) as 𝑑 → 0 and lim sup. (m/ n*) 

and 𝑓𝑖𝑥 two constants 𝐿(> 0) and 𝜂 ∈ (0,1). start taklng observations' sequentially with the stopping time 𝑁1 defined 

by 

𝑁1 = Inf ⋅ [𝑛1 ≥ 𝑚: 𝑛1 ≥ 𝜂 (
𝑎

𝑑
)

2
𝜓̂𝑛1

] .                                                         (1.4) 

                                                                                           

                    

Based on these 𝑁1 observations compute 𝜓̂𝑁1
. Then jump ahead and collect 𝑁2 observations, where; 

                                                           𝑁2 = [(
𝑎

𝑑
−)

2
𝜓̂𝑁1

+ 𝐿]
+

+ 1                 …………  (1.5) 

                                                             

Let 𝑁 = max ⋅ (𝑁1, 𝑁2) and construct the reglon for 𝜃. 

𝑅̇N = [𝑧: {(𝜃̂𝑁 − 𝑧)′ ⋅ 𝑄(𝜃̂𝑁 − 𝑧)}
𝛿

≤ 𝑑2]. 

we first establish some basic lemmas 

 

Lemma 1.1: lim𝑑→0  𝑁1 = li𝑚
𝑑→0

𝑁2 = ∞ 

Proof: The proof is an immediate consequence of   the definition (1.5) and (1.6) of N1 and N2.  

 

 

Lemma 1.2: lim𝑑→0  ( N/n∗) = 1 a. s ⋅ 
 

proof: From (1.5), we notice that: 

𝜂 (
𝑎

𝑑
)

2
𝜓̂𝑁1

≤ N1 ≤ 𝜂 (
𝑎

𝑑
)

2
𝜓̂𝑁1−1 + 1,…………………. (1.7) 

or 

(𝜓̂𝑁1
/𝜓) ≤ (𝑁1′𝜂𝑛∗) ≤ (𝜓̂𝑁1

− 1′𝜓) + (𝜂𝑛∗)−1………………. .(1.8) 

 

using the fact that 𝜓̂n is a consistent estimator of 𝜓 and applying Lemma 1.1, we obtain from (1.8) 

 

 

lim
𝑑→0

 (𝑁1/𝜂∗) = 1  a.s.  

 

similarly using (1.6), it can be shown that 

 

lim
d→0

 ( N2/n∗) = 1  a.s.  

The lemma now follows from the definition of N. 
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Lemma 1.3: As 𝑑 → 0, (𝜂𝑛∗)−
1

2(𝑁1 − 𝜂𝑛∗) ⟶
𝐿

𝑁(𝑂, 2𝑞−1) 

 

Proof: Using (𝐴3), we can rewrite the stopping rule (1.5) as follows 

 

𝑁1 = Inf ⋅ [𝑛1 ≥ 𝑚 ∑  
𝑛1

−𝑠

𝑗=1  𝑞−1𝑧𝑗
(𝑞)

≤ (𝑛1 − 𝑠) 𝑛1/𝜂𝑛∗ ]………………………. .(1.9) 

 

Let us define a new stopping variable 𝑁1
∗ by 

𝑁1
∗ = lnf ⋅ [𝑛1 ≥ 𝑚 − s: ∑  

𝑛1

𝑗=1

  (𝑞−1𝑧𝑗
(𝑞)

) ≤ 𝑛1
2

⋅ (1 + sn1
−1)/𝜂𝑛∗]

 

 

                                  ………………… (1.10). 

 

It follows from Lemma 1 of Swanepoel and Vanwyk [4] (1982) that the stopping variables N1 and N1
∗ follows the same 

probability distribution. Comparing (1.10) with equation (1.1) of Woodroofe [5] (1977), we obtain in his notations 𝛼 =
2, 𝛽 = 1, 𝜇 = 1 and 𝜏2 = 2𝑞 The lemma now follows from a result of Bhattacharya and Mallik [1] (1973) that 

(𝜂𝑛∗)−
1
2( N1 − 𝜂𝑛∗) ⟶

𝐿
𝑁(𝑂, 𝛽2𝜏2𝜇−2) 

 

Lemma 1.4: For all m≥ {𝑡, 𝑠 + 2𝑞-1}, as d tends to 0 

 

𝐸(𝑁1) = 𝜂𝑛∗ + 𝜈 − (𝑠 + 2𝑞−1) + 𝑜(1), 
where 𝜈 is spectfied. 

 

Proof: In the notations of Woodroofe [5] (1977) a = q/2, 𝜆 = 𝜂𝑛∗, 𝐿(𝑛) = 1 + 3𝑛−1 and 𝐿0 =S The lemma now 

follows from his Theorem 2.4 that, for all 𝑚 > 𝑠 + 2𝑞−1 as 𝑑 → 0 

 

Lemma 1..5: For all 𝑚 > max{𝑡, 𝑠 + 2𝑞−1} as 

𝑑 → 0.
𝐸(𝑁) = 𝑛⋆ + 𝐿 − 𝜂−1(𝑠 + 2𝑞−1) + 𝑜(1),

Var ⋅ (𝑁) = (2𝑛⋆/𝜂𝑞) + 𝑜(𝑑−2),

 ………. (1.11) 

                                                                  ……………… (1.12) 

and, for specified 𝛾(> 0). 

 

𝐸|𝑁 − 𝐸(𝑁)|𝛾 = 𝑂(𝑑−𝛾) … ….                  … … … ..           (1.13) 

Proof: The stopping rule (1.5) can be re-written 

𝑁1 = Inf ⋅ [𝑛1 ≥ 𝑚: 𝑞(𝑛1 − 𝑠)
𝜓̂1

𝜓
≤

𝑑2𝑞𝑛1(𝑛1 − 𝑠)

𝜂𝑎2)
]. 

Let us consider the difference. 

𝐷𝑑 =
𝑑2𝑞𝑁1(𝑁1 − 𝑠)

𝜂𝑎2𝜓
− 𝑞1(𝑁1 − 𝑠)

𝜓̂1

𝜓
⋅                            (1.14) 

It follows from Woodroofe [5] (1977) that the mean of the asymptotic distribution of 𝐷𝑑 is 𝜈. Let us define. 

 

𝐷𝑑
∗ = 𝜂{𝑞(𝑁1 − 𝑠)}−1(𝑎/𝑑)2𝜓𝐷𝑑 

Since 

𝑞(𝑁1 − 𝑠)
𝜓̂𝑁1

𝜓
= ∑  

𝑁1−𝑠

𝑗=1

  𝑧𝑗
(𝑞)

 and 

𝑞(𝑁1 − 𝑠 − 1)
𝜓̂𝑁1−1

𝜓
= ∑ 𝑧𝑗

(𝑞)
 

𝑁1−𝑠−1

𝑗=1

  , 

 

one concludes that; 
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                                                            𝑞(𝑁1 − 𝑠)
𝜓̂𝑁1

𝜓
→ 𝑞(𝑁1 − 𝑠 − 1)

𝜓̂𝑁1−1

𝜓
. 

 

Hence, from (1.7), (1.14) and (1.15), 

𝐷𝑑
∗ = 𝜂{𝑞(𝑁1 − 𝑠)}−1(𝑎/𝑑)2𝜓 [

𝑑2𝑞(𝑁1 − 𝑎)

𝜂 2𝜓
− 𝑞(𝑁1 − 𝑠)

𝜓𝑁1

𝜓
] 

≤ 𝜂{𝑞(𝑁1 − 𝑠)}−1(𝑎/𝑑)2𝜓 [
𝑑2𝑞(𝑁1 − 𝑠)

𝜂𝑎2𝜓
−𝑞(𝑁1 − 𝑠 − 1)

𝜓̂𝑁1 − 1

𝜓
] 

 

≤ 𝜂{𝑞(𝑁1 − 𝑠)}−1(𝑎/𝑑)2𝜓 [
𝑑2𝑞(𝑁1 − 𝑠)

𝜂𝑎2𝜓
−

𝑞(𝑁1 − 𝑠 − 1)

𝜓
𝜂−1(𝑑/𝑎)2 ⋅ (𝑁1 − 1)] 

 

= 𝑁1 − (𝑁1 − 𝑆 − 1) 

= 𝑠 + 1 

 

Furthermore, assuming (1.7)  we get. = 𝜂{𝑞(𝑁1 − 𝑠)}−1(𝑎/𝑑)2𝜓 [
𝑑2𝑞𝑁1(𝑁1−𝑠)

𝜂𝑎2𝜓
−𝑞(𝑁1 − 𝑠)

𝜓̂𝑁1

𝜓
] .  

 

⩾ 𝜂{𝑞(𝑁1 − 𝑠)}−1(𝑎/𝑑)2𝜓 [
𝑑2𝑞 𝑁  𝑁𝑁1 − 𝑠)

𝜂𝑎2𝜓
−𝑞(𝑁1 − 𝑠)

𝜓̂𝑁1

𝜓
] .  

 

= 0 

 

Thus, 0 ≤ 𝐷𝑑
∗ ≤ 𝑠 + 1 and hence from dominated convergence theorem 𝐸(𝐷d

∗) → 𝜈 as d → 0. Utilizing 

this result and Lemma 4.9, we obtain for all 

 

𝑚 > max ⋅ {𝑡, 𝑠 + 2𝑞−1}, as 𝑑 → 0. 

 

𝐸(𝐷𝑑
∗) = 𝜈 = 𝐸[𝑁1 − 𝜂(𝑎/𝑑)2𝜓̂𝑁1

] 

 

𝐸[(𝑎/𝑑)2𝜓̂𝑁1
]  = 𝜂−1𝐸(𝑁1 − 𝜈).

 = 𝑛∗ − 𝜂−1(𝑠 + 2𝑞−1) + 𝑜(1).
 

and (1.11) follows from the definition of N.  

 

By the definition of 𝑁, 
Var (𝑁) = 𝜂−2Var ⋅ (𝑁1). 

1et 𝑛(𝑁1) = (𝜂𝑛∗)−1/2(𝑁1 − 𝜂𝑛∗). 

 

 It follows from theorem2.3 of Woodroofe [5] (1977) that h2( N1) is uniformly integrable for all 𝑚 > 𝑠 + 2𝑞−1.  

 

Now utilizing Lemma 4.8, we obtain for all 𝑚 > 𝑠 + 2𝑞−1, as 𝑑 → 0 

 

var. (𝑁) = 𝜂−2[2𝑞−1𝜂𝑛∗{1 + 𝑜(1)}]. 
and (1.12) holds 

The proof of (1.13) is similar to that of result (3) of Hall (1983). 

 

Result: The main result is now stated and proved in the following theorem: 

Theorem: For all m> (𝑠 + 2𝑞−1),and sufficiently small d, say d≤ 𝑑0 

 

𝑃(𝜃 ∈ 𝑅𝑁) ≥ 𝛼 ;           𝑖𝑓𝐿 > 𝜂−1 {𝑠 − (2𝑞)−1⋅ (𝑟 − 𝑎2 − 6)}

.
 

Proof: Utilizing (𝐴2), the coverage probability associated with the sampling scheme (1.5) − (1.6) is 
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𝑃(𝜃 ∈ 𝑅𝑁) = ∑  

∞

𝑛=𝑚

 P [𝑛𝜓−1{(𝜃̂𝑛 − 𝜃)′ ⋅ 𝑄(𝜃̂𝑛 − 𝜃)}

≤ 𝑎2(𝑛/𝑛∗); 𝑁 = 𝑛]

 = ∑  

∞

𝑛=𝑛

 𝐺(𝑟)(𝑎2𝑛/𝑛∗) ⋅ 𝑃(𝑁 = 𝑛)

 = 𝐸[𝐺(𝑟)(𝑎2 N/𝑛∗)]. 

 Expanding 𝐺(𝑟)(. ) around 𝑎2 ' by second-order Taylor's series, we obtain for  

 
|𝑎2 − 𝑊| ≤ 𝑎2|(𝑁/𝑛∗) − 1|

𝑃(𝜃 ∈ 𝑅𝑁) = 𝐺(𝑟)(𝑎2) + 𝑎2𝐺(𝑟)′
(𝑎2)𝐸{(𝑁/𝑛∗)} + (𝑎4/2)𝐸{(𝑁/𝑛∗) − 1}2𝐺(𝑟)′′(𝑎2)+𝜉𝑑′

 where the remainder term 𝜉𝑑 = 𝑂(𝑎6𝐸|𝑁 − 𝐸(𝑁)|3). 

 Denoting by 𝑔(𝑟)(. ), the p.d.f. of a 𝑥2 r.v, we  note that

𝐺(𝑟)′
(𝑥) = 𝑔(𝑟)(𝑥)

 

and 

𝐺𝑟′′
(𝑥) = {(

𝑟

2
− 1) 𝑥−1 −

1

2
} 𝑔(𝑟)(𝑥). 

Hence applying Lemma 1.5., we obtain for all 

𝑚 >, 𝑠 + 2𝑞−1.

𝑃 (𝜃 ∈ 𝑅𝑁) = 𝛼 + (
𝑎2

𝑛∗) {𝐿 − 𝜂−1(𝑠 + 2𝑞−1) + 𝑜(1)}

 ⋅ 𝑔(𝑟)(𝑎2) + (
𝑎4

2𝑛∗2) {Var (𝑁) + (𝐸(𝑁)−𝑛∗)2} {𝑎−2 (
𝑟

2
− 1) −

1

2
} ⋅ 𝑔(𝑟)(𝑎2) + 𝑂(𝑑6𝑑−3)

 

 = 𝛼 + (
𝑎2

𝑛∗) {𝐿 − 𝜂−1(𝑠 + 2𝑞−1)𝑔(𝑟)(𝑎2) + (
𝑎4

2𝑛⋆2) {
2𝑛∗

𝜂𝑞
+ 0(𝑑−2) + (𝐿 − 𝜂−1(𝑠 + 2𝑞−1)

 + (
𝑎4

2𝑛⋆2) {
2𝑛∗

𝜂𝑞
+ 0(𝑑−2) + (𝐿 − 𝜂−1(𝑠 + 2𝑞−1) + (

𝑎4

2𝑛⋆2) {
2𝑛∗

𝜂𝑞
+ 0(𝑑−2) + (𝐿 − 𝜂−1(𝑠 + 2𝑞−1)

 = 𝛼 + (
𝑎2

𝑛∗) [𝐿 − 𝜂−1(s + 2𝑞−1) +(𝜂𝑞)−1 {(
𝑟

2
− 1) −

𝑎2

2
}] 𝑔(𝑟)(𝑎2) + 0(𝑑4) + 0(𝑑2) + 0(𝑑3)

 

And the   Result follows 
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