Convex Conjugate of A Bounded Linear Functional on L^p - Space

¹T.Srinivasarao, ²Dr.G.VenkataRao

¹Asst. Professor, Department of Mathematics, UCS ²Asst. Professor University College of Engineering ^{1.2}Adikavi Nannaya University, Rajahmundr, Andhra Pradesh – 533296 India

Introduction:

An L^p - space is a normed linear space *X* and the mapping $\Gamma: X \rightarrow \mathbb{R}$ (the set of real numbers) satisfying the linearity property given by $\Gamma(\alpha f + \beta g) = \alpha \Gamma(f) + \beta \Gamma(g)$ and there is a constant *M* such that $|\Gamma(f)| \leq M \cdot ||f||$ Further, the norm of Γ can be defined by $||\Gamma|| = \sup \frac{|\Gamma(f)|}{\|f\|}$ (1.1)

If in X, $||f||_p = (\int_0^1 |f|^p)^{1/p}$, then X[0, 1] is the space of real valued functions with p to be a non negative real number that satisfies $\frac{1}{p} + \frac{1}{q} = 1$ for some real number q, and all such functions f are in this space $L^p[0,1]$ of $\int_0^1 |f|^p < \infty$. $L^p[0, 1]$ space here after conveniently be called L^p .

Properties of $L^p[0, 1]$:

1.1. $\|\alpha f\|_p \le |\alpha| \|f\|_p$ 1.2. $\|f + g\|_p \le \|f\|_p + \|g\|_p$ called the Minkowski Inequality 1.3. $\|f\|_p = 0 \leftrightarrow f = \overline{0}$ 1.4. The precondition $\frac{1}{p} + \frac{1}{q} = 1$ in L^p -space gives that there is another normed linear space L^q - space that realizes $f \in L^p$ and $g \in L^q$ such that $f \cdot g \in L^1[0,1]$ with the property $\int |f \cdot g| \le \|f\|_p \|g\|_q$

This property is called the Holder's inequality.

Observe that the boundedness of each member $f \in L^p$ by $\int_0^1 |f|^p < \infty$ ascertains that, if $\{f_n\}$ is monotonic and converging to f in L^p , then $||f_n - f||_p \to 0$ which shows that $f \in L^p$ and so, L^p - space is complete leading to L^p - space is a Banach Space. if monotonicity is not considered, then $\{f_n\}$ convergence will become pointwise. also, showing the convergence of a Cauchy sequence within the L^p space will confirm the completeness of L^p - space.

The major question of how to realize the suitable $f \in L^p$ for the given $g \in L^q$ - space? For this, there is a two step construction that a sequence of simple functions $\{\varphi_n\}$ and a sequence of continuous functions $\{\psi_n\}$ in view of Littlewood's principles that $\|f - \varphi_n\|_p < \varepsilon$ and $\|f - \psi_n\|_p < \varepsilon$

Now, the existence of $\Gamma: L^p \to L^q$ for each $g \in L^q$ that satisfies the relevant $f \in L^p$ such that $\Gamma(f) = \int_0^1 f \cdot g$ with $\|\Gamma\| = \|g\|_q$

Abstract: if $\Gamma: L^p \to L^q$ is a linear functional having $\frac{1}{p} + \frac{1}{q} = 1$, for each $g \in L^q$ that realizes the relevant $f \in L^p$ such that $\Gamma(f) = \int_0^1 f \cdot g$ with $\|\Gamma\| = \|g\|_q$, then there is a convex complement of Γ given by $\wedge: L^q \to L^p$ with the property $\alpha\Gamma + \beta \wedge = 1$ for some $0 < \alpha < 1$ and $\beta = 1 - \alpha$. if $\alpha = 0$ or $\alpha = 1$, then the functionals Γ and Λ will become singular and so, will not satisfy the contraction principle. Recollect that, if $\{\varphi_n\}$ converges to f in L^p – space, then $\|\Gamma(f) - \Gamma(\varphi_n)\|_p \leq \|\Gamma\|\|f - \varphi_n\|_p$ and by the properties of the linear functional Γ , it is known that $\|\Gamma\| = \|g\|_q$. Using this, $\|\Gamma(f) - \Gamma(\varphi_n)\|_p \leq \|g\|_q \|f - \varphi_n\|_p$. since $L^p \& L^q$ are linear spaces on the set of real numbers with the symmetric condition $\frac{1}{p} + \frac{1}{q} = 1$, by interchanging the roles of f and g in the Riesz – representation theorem, for each $\wedge: L^q \to L^p$ and $g \in L^q$, there corresponds a unique $f \in L^p$ with $\frac{1}{p} + \frac{1}{q} = 1$ such that $\|\Lambda(g) - \Lambda(\psi_n)\|_q \leq \|\Lambda\|\|g - \psi_n\|_q$

Section 1: Norm of the convex conjugate operator

Theorem 1.1: for each f in L^p , g in L^q , there exists a unique pair of linear functionals $\Gamma: L^p \to L^q$ and $\Lambda: L^q \to L^p$ such that $\Gamma(f) = \int_0^1 fg \, d\mu = \Lambda(g)$ with $\|\Gamma\| = \|g\|_q$ and $\|\Lambda\| = \|f\|_p$

Proof: there is a sequence of simple functions that estimate $\{\psi_n\}$ that converges to g in L^q space and while L^q - space is complete, $g \in L^q$.

$$\begin{split} \wedge (g) &= \int_{0}^{1} gf \, d\mu = \int_{0}^{1} |f|^{p} \, d\mu \\ &= \left(||f||_{p} \right)^{p} = \left(||f||_{p} \right)^{p-1+1} \\ &= \left(||f||_{p} \right)^{p-1} \left(||f||_{p} \right)^{1} \\ &= \left(||f||_{p} \right)^{\frac{p}{q}} \left(||f||_{p} \right)^{1} \\ &= ||g||_{q} ||f||_{p} \end{split}$$
But by (1.1), $\| \wedge \| = \sup \frac{|\Lambda(g)|}{||g||_{q}}$ That means, $\| \wedge \| \ge \frac{|\Lambda(g)|}{||g||_{q}}$ or $\Lambda(g) \le \| \wedge \| ||g||_{q} \\ \| \wedge \| ||g||_{q} \ge ||g||_{q} ||f||_{p}$ $\| \wedge \| \ge \| f \|_{p}$ Also, Holder's inequality leads to $|\Lambda(g)| = |\int_{0}^{1} af \, du| \le ||g|| = ||g||_{q}$

Also, Holder's inequality leads to $|\Lambda(g)| = |\int_0^1 gf \, d\mu| \le ||g||_q ||f||_p$ Consequently, $||\Lambda|| \le ||f||_p$ and thus $||\Lambda|| = ||f||_p$

Result: 1.1: by 1.4., $gf \in L^1$ and the indefinite integral $\int_0^t gf d\mu$ is a continuous function for $0 \le t \le 1$ saying that $\Lambda(g)$ is a continuous function on L^1 .

Section 2: Convexity of the operator \land

Theorem 2.1: if $f \in L^p$, $g \in L^q$, then $\alpha \Gamma(f) + (1 - \alpha) \wedge (g) = \Gamma(f) = \wedge (g)$ for each $0 < \alpha < 1$. Proof: $\Gamma(f) = \int_0^1 fg \, d\mu = \wedge (g)$, then $\alpha f \subseteq L^p$ for every scalar α , $(1 - \alpha)g \in L^q$. $\int_0^1 \alpha fg \, d\mu = \alpha \Gamma(f)$ and $\int_0^1 (1 - \alpha) fg \, d\mu = (1 - \alpha) \wedge (g)$ So, $\alpha \Gamma(f) + (1 - \alpha) \wedge (g) = \int_0^1 fg \, d\mu = \Gamma(f) = \wedge (g)$

Result 2.1: $\|\Gamma\| = \|g\|_q$ shows that Γ is a bounded linear functional on L^p while $\int_0^1 [g]^q d\mu < \infty$. Also, $\Gamma(f) = \Lambda(g)$ for some $f \in L^p \& g \in L^q$. this shows that Λ is a bounded linear functional on L^q .

Definition 2.1: The bounded linear functional Λ on L^q is the convex conjugate of Γ on L^p with the property with $\frac{1}{n} + \frac{1}{q} = 1$

References:

- 1. 1.An Approach to F. Riesz Representation Theorem <u>Cubo: A Mathematical Journal</u>; Vol 20, No 2, Jun 2018; PP: 1-12
- 2. 2.A Riesz Representation Theory for completely Regular Hausdorff Spaces and its Applications Open Mathematics ; Vol 14, No 1, 31 Jan 2016 ; PP: 474-496
- 3. 3.Compactness in Spaces of Inner Regular Measures and a General Portmanteau Lemma Journal of Mathematical Analysis and Applications ; Vol 351, No 2, 15 Mar 2009 ; PP: 792-80
- 4. 4. Real Analysis, 3rd Edition, H L Royden, Pages: 118 130, MacMillan Publishing Company, New York.