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Abstract: A linear space can be made a measurable space’. By taking subsets of the linear space and their linear spans as 

the elements of ℬ. This work is an exercise to bring out the relationship between the subspaces of a linear space and the 

respective dimensions as measures that follows the properties of subspaces with respect to the dimension of a subspace or 

equivalently with respect to the measure. Orthogonal complements in the case of subspaces will be seen as mutually singular 

measurable subspaces. So, the direct sum of a subspace and its orthogonal complement will be the direct sum of the mutually 

singular measurable subspaces of a measurable space.  

  

Introduction: if F is a field, U(F) and V(F) are vector spaces, 𝑇: 𝑈(𝐹) → 𝑉(𝐹) is a linear transformation, then, the range of T is a 

subspace of V(F) denoted by R(T) and the Kernel of T is the subspace of U(F) denoted by N(T). The largest subset of independent 

vectors of a vector space is the basis of the vector space. If the basis has finite number of vectors, then the vector space is finite 

dimensional and otherwise, infinite dimensional. See that the dimension of a vector space is a non negative integer. The dimension 

of the range space R (T) is ρ (T) called the rank of T and that of the Kernel or null space N (T) is ν (T) called the nullity T.  If T is a 

singular transformation, then ν (T) > 0.the dimension theorem says that ‘if 𝑇: 𝑈(𝐹) → 𝑉(𝐹), then ρ (T) + ν (T) = dim U (F). The set 

of all linear combinations of any subset of either U (F) or V (F) is also a subspace of the respective linear spaces. The set of all 

linear combinations of a subset S of a linear space W (F) is called the linear span of S denoted by L(S) and is a subspace of W (F). 

So, the motive of the paper is showing the range space and null space of a linear transformation are mutually singular subspaces 

with respect to a measure defined in the following sections.  

  

Taking the image vectors of basis of U (F) under T, as the linear combinations of the basis vectors of V (F), whose coefficients are 

taken into a matrix after getting transposed will indicate the matrix representation of the linear transformation. All the properties of 

the linear transformation T are satisfied by the matrix of T and at times denoted by matrix A suitable to T. The subspace spanned by 

the rows of A is the row space and that by the columns is the column space. On the other hand, the row null space is the kernel of 

T.  Since the dimension of the row space and that of column space are equal. So, using the notation ‘dim’ for dimension of a 

subspace or a linear space,  

Dim column space + dim row null space = dim row space + dim row null space  

      = number of rows of A = dim U (F).  

 If the number of rows of A > number of columns of A, then the related linear transformation is singular.  

  

Keywords:  

The linear span of a subset S of a linear space U(F) is L(S)  

L(S) is a subspace of a linear space 

𝐿(𝑆1) ⊕ 𝐿(𝑆2)  is the direct sum of subspaces  

𝐵𝑆  is the standard basis of the linear space  

𝑅(𝑇) is the range of T and P(R(T)) is the inverse image of R(T) in U(F)  

(𝐿(𝑃(𝑅(𝑇))))𝑡 is the transpose of the subspace  

µ (L(S)) = dim L(S): the dimension of the linear space is the measure μ 

 

Section 1: Outer measure and measure on a linear space  

There is a subspace 𝐿(𝑃(𝐵𝑆)) in U(F) that is isomorphic to R (T) under  the inverse transformation P: R(T)  U(F) 

satisfying 𝐿(𝑃(𝐵𝑆)) = (𝑃(𝑅(𝑇)))𝑡 where 𝐵𝑆   is the standard basis of R(T) and  𝐿(𝑃(𝐵𝑆)) is the linear span of 𝑃(𝐵𝑆) which is the 

image of  R(T) under P. it can be followed that 𝐿(𝑃(𝐵𝑆)) and R(T) are isomorphic. This idea in the case of Topology is observed 

to be the open mapping. Clearly, 𝐿(𝑃(𝐵𝑆)) ∩ 𝑁(𝑇) = {0̅} the trivial subspace, while 𝐿(𝑃(𝐵𝑆)) is the pre – image of the non singular 

part of R (T).  

N (T) is the pre – image of singular part {0̅} of V (F).  The direct sum of 𝐿(𝑃(𝐵𝑆)) and  

N (T) is U (F). [1] 

Further, 𝐿(𝑃(𝐵𝑆)) is the orthogonal complement of N (T). i.e.,𝐿(𝑃(𝐵𝑆)) ⊕N (T) = U (F). [4] & [6].  

Definition 1.1: an integer valued function µ: ℬ = {L(S)}  𝑍+ ∪ {0̅} is called an integer measure.  

Note that, If U (F) is a linear space, ℬ = {L(S)} is the class of subspaces of U (F) for each subset S of U (F), then µ :{L(S)} defined 

by µ(L(S)) = dim L(S) [6]. 

Definition 1.2: if U(F) is a linear space, S is subset, L (S) is a subspace,{L(S)}is the class of subspaces of U(F), then µ(L(S)) = dim 

L(S) is said to be a measure on {L(S)} if  

µ ({0̅}) = 0         ...... (i) 

µ(𝐿(𝑆1 ∪ 𝑆2)) ≤ 𝜇(𝐿(𝑆1)) + 𝜇(𝐿(𝑆2))       ...... (ii) 

𝐿(𝑆1) ⊆ 𝐿(𝑆2) implies 𝜇𝐿(𝑆1) ≤ 𝜇𝐿(𝑆2)      ...... (iii) 
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Observe that the dimension of a subspace or a linear span is an integer greater than or equal to 0. So, µ(L(S)) is a member of 𝑍+ ∪
{0}. So, µ is well defined. Further, it satisfies Dim {0̅} = 0 or µ ({0̅}) = 0      

 ...... (i)  

Dim 𝐿(𝑆1 ∪ 𝑆2) ≤ dim(𝐿(𝑆1)) + dim(𝐿(𝑆2))  or,    

µ(𝐿(𝑆1 ∪ 𝑆2)) ≤ 𝜇(𝐿(𝑆1)) + 𝜇(𝐿(𝑆2))     ...... (ii) 

𝑆1 ⊆ 𝑆2implies 𝐿(𝑆1) ⊆ 𝐿(𝑆2) implies dim 𝐿(𝑆1) ≤ dim𝐿(𝑆2)   or  

𝜇𝐿(𝑆1) ≤ 𝜇𝐿(𝑆2)         ...... (iii) 

So, 𝜇𝐿(𝑆) = dim𝐿(𝑆) is an outer measure on ℬ. [5] 

 The above three conditions satisfy the definition of a measure on a measurable space while U (F) is a measurable space.  Note that 

ρ and ν are also measures of the subspaces namely dimension of the range space and the dimension of the null space. So, 

conveniently, we write ρ (T) = µ(R (T)) and ν (T) = µ (N (T)).  

We now prove that 𝐿(𝑃(𝐵𝑆)) and N (T) are mutually singular with respect to the complementation of subspaces under dimensions 

treated as measures in the measure space U (F).[3].  

Countable union of linear spans is again a linear span and the intersection of countable number of linear spans is again a linear span 

confirms that  𝜇𝐿(𝑆) = dim𝐿(𝑆) is a saturated measure or a complete measure. [5]. 

 

Section 2:  Signed measure on a linear space 

Definition 2.1: 𝜇1(𝐿(𝑆)) = 𝜇(𝐿(𝑆) ∩ 𝐿(𝑃(𝐵𝑆))) and 𝜇2(𝐿(𝑆)) = 𝜇(𝐿(𝑆) ∩N (T))  

Definition 2.2: If two measures 𝜇1 & 𝜇2 are mutually singular, denoted by 𝜇1 ⊥ 𝜇2 if 𝜇1(𝐿(𝑆)) = 0 when 𝐿(𝑆) ⊆ 𝐿(𝑃(𝐵𝑆)) and 

𝜇2(𝐿(𝑆)) = 0 when 𝐿(𝑆) ⊆ N(T) 

Result 2.1:  The measures 𝜇1 & 𝜇2 are non negative measures on U (F) when T: U (F)  U (F) is a linear transformation.  

Result 2.2: The measures 𝜇1 & 𝜇2 make Radon decomposition on U (F). [5]  

To apply Radon decomposition, the zero measure is taken as the signed measure.  

 

Section 3: Mutual Singularity of Subspaces in a linear space  

Definition 3.1: two subspaces 𝐿(𝑆1) and 𝐿(𝑆1) are said to be mutually singular with respect to the measure µ if a non zero vector α 

of 𝐿(𝑆1)  is linearly independent with any set of vectors of 𝐿(𝑆2)  and vice versa.  

 Theorem 3.1: if µ (𝐿(𝑆1) + 𝜇(𝐿(𝑆2)) = 𝜇(𝑈(𝐹)) for some linear space U (F), and  

   𝐿(𝑆1) ∩ 𝐿(𝑆2) = {0̅}, then U (F) = 𝐿(𝑆1) ⊕ 𝐿(𝑆2)   

Result 3.1: A hyperplane through origin and the normal drawn to the plane having foot of the perpendicular at the origin are the 

mutually singular subspaces in 𝑅n 

 Result 3.2: Two subspaces that are orthogonal complements in a linear space are mutually singular with respect to the measure 

equal to the dimension of the linear spaces.  

A plane through origin in 𝑅3 is a subspace spanned by 2 linearly independent vectors and so, of dimension 2. The normal drawn to 

this plane through origin is a straight line spanned by one vector and so, of dimension 1. The plane and its normal meeting at origin 

are the orthogonal complements whose sum of dimensions is 3 equal to the dimension of the linear space 𝑅3 

 Result 3.3: Rank ρ and nullity ν are mutually singular measures when T: U(F)  U(F) [2] 

 Theorem 3.2: for any subspace L(S) in a linear space U(F), there corresponds a unique subspace 𝐿(𝑆2)⊥such that µ(𝐿(𝑆) +
𝜇(𝐿(𝑆2)⊥) = 𝜇(𝑈(𝐹)) . 

 Observation 3.1:  Hahn decomposition is not possible with respect to µ(L(S)) = dim L(S) while this measure is not a signed measure.  

Note: the measure 𝜇 in the present discussion is not a complete measure.  
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