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Abstract—the Curie-Weiss model is important in statistical mechanics and has been extensively discussed in the literature. 

The model not only displays a phase transition, with distinct behaviors at high and low temperature, but also serve as an 

illustration of various techniques and show how the probabilistic behavior is intimately related to the analytic properties of 

the thermodynamic potentials (free energy and pressure) of the model. For some history and an overview of first asymptotic 

results on the Curie-Weiss models, the reader is referred to Ellis and Newman (1978a, 1978b). Using the technique of 

exchangeable pair approach, Chatterjee and Shao (2011) and Eichelbacher and Löwe (2010) studied a kind of classical 

Curie-Weiss model. Shao and Zhang (2019) studied a general Curie-Weiss model and got the optimal convergence rate for 

Kolmogorov bound. In this paper, we establish the Wasserstein bound in nonnormal approximation for the total 

magnetization in the general Curie-Weiss model at the critical temperature. The proof is based on Stein’s method for 

exchangeable pairs. 

 

IndexTerms—Stein’s method,exchangeable pairs, andgeneral Curie-Weiss model. 
________________________________________________________________________________________________________ 

1. INTRODUCTION 

The Curie–Weiss model has been extensively discussed in the statistical physics field. The asymptotic behavior for the Curie–Weiss 

model was studied by Ellis and Newman [1–3]. Recently, Stein’s method has been used to obtain the convergence rate of the Curie–

Weiss model. For example, Chatterjee and Shao [4] and Eichelbacher and Löwe [5] used exchangeable pairs to get a Berry– Esseen 

bound at the critical temperature of the simplest Curie–Weiss model, where the magnetization was valued on {−1,1} with equal 

probability. More generally, when the magnetization was distributed as a measure 𝜌 with a finite support, Chatterjee and Dey [6] 

obtained an exponential probability inequality. In this section, we introduce the general Curie–Weiss model. 

Let 𝜌 be a probability measure satisfying 

∫ 𝑥
∞

−∞

𝑑𝜌(𝑥) = 0 and ∫ 𝑥2
∞

−∞

𝑑𝜌(𝑥) = 1 

𝜌 is said to be type 𝑘 (an integer) with strength 𝜆𝜌 if 

∫ 𝑥𝑗
∞

−∞

𝑑𝛷(𝑥) − ∫ 𝑥𝑗
∞

−∞

𝑑𝜌(𝑥)

 = {
0  for 𝑗 = 0,1, … ,2𝑘 − 1,
𝜆𝜌 > 0  for 𝑗 = 2𝑘

 (1) 

where 𝛷(𝑥) is the standard normal distribution function. We define the Curie-Weiss model as follows. For a given measure 𝜌, let 

(𝑋1, … , 𝑋𝑛) have the joint probability density function 

𝑑ℙ𝑛,𝛽(𝐱) =
1

𝑍𝑛
exp (

𝛽(𝑥1 +⋯+ 𝑥𝑛)
2

2𝑛
) ×∏𝑑

𝑛

𝑖=1

𝜌(𝑥𝑖) (2) 

 

where 𝐱 = (𝑥1, … , 𝑥𝑛), 0 < 𝛽 ≤ 1 and 𝑍𝑛 is the normalizing constant. 

Let 𝜉 be a random variable with probability measure 𝜌. Assume that 𝛽 = 1, there exist constants 𝑏0 > 0, 𝑏1 > 0 and 𝑏2 > 1 

such that 

𝔼𝑒𝑡𝜉 ≤

{
 
 

 
 exp (

𝑡2

2
− 𝑏1𝑡

2𝑘) , |𝑡| ≤ 𝑏0

exp (
𝑡2

2𝑏2
) , |𝑡| > 𝑏0

 (3) 

Let 𝑆𝑛 = 𝑋1 +⋯+ 𝑋𝑛. Ellis and Newman [2], [3] showed that if 𝛽 = 1, and 𝜌 is of type 𝑘, then 𝑛−1+
1

2𝑘𝑆𝑛 converges to a nonnormal 

distribution of a random variable 𝑌 with probability density function 

𝑝(𝑦) = 𝑐1𝑒
−𝑐2𝑦

2𝑘
 

where 𝑐2 > 0 and 𝑐1 is the normalizing constant. 

The aim of this paper is to give the Wasserstein distance between 𝑛−1+
1

2𝑘𝑆𝑛 and 𝑌 with optimal rate Cn−
1

2. In the case of 

Kolmogorov distance, the reader is refered to [7, Theorem 3.2]. 
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2. METHODS 

For nonnormal approximation, we will develop Stein’s method with the help of exchangeable pairs as follows. 

Let 𝐼 = (𝑎, 𝑏) be a real interval, where −∞ ≤ 𝑎 < 𝑏 ≤ ∞. A function is called regular if 𝑓 is finite on 𝐼 and, at any interior point of 

𝐼, 𝑓 possesses a right-hand limit and a left-hand limit. Further, 𝑓 possesses a right-hand limit 𝑓(𝑎 +) at the point 𝑎 and a left-hand 

limit 𝑓(𝑏 −) at the point 𝑏. Let us assume, that the regular density 𝑝 satisfies the following condition: 

(A1) Let 𝑝 be a regular, strictly positive density on an interval 𝐼 = [𝑎, 𝑏]. Suppose 𝑝 has a derivative 𝑝′ that is regular on 𝐼, has 

only countably many sign changes, and is continuous at the sign changes. Suppose moreover that 

∫𝑝
𝐼

(𝑥)|log(𝑝(𝑥))|𝑑𝑥 < ∞ 

and that 

𝜓(𝑥) ≔
𝑝′(𝑥)

𝑝(𝑥)
 

is regular. 

In [8], Stein et. al. proved that a random variable 𝑍 is distributed according to the density 𝑝 if and only if 𝔼(𝑓 ′(𝑍) + 𝜓(𝑍)𝑓(𝑍)) =

𝑓(𝑏 −)𝑝𝑏—𝑓(𝑎 +)𝑝(𝑎 +) for a suitably chosen class ℱ of functions 𝑓. The corresponding Stein identity is 

𝑓 ′(𝑥) + 𝜓(𝑥)𝑓(𝑥) = ℎ(𝑥) − 𝑃(ℎ) (4) 

Where ℎ is a measurable function for which 

∫|ℎ(𝑥)|
𝐼

𝑝(𝑥)𝑑𝑥 < ∞, 𝑃(𝑥) ≔∫ 𝑝
𝑥

−∞

(𝑦)𝑑𝑦 

And 

𝑃(ℎ) ≔∫ℎ
𝐼

(𝑦)𝑝(𝑦)𝑑𝑦. 

The solution 𝑓 := 𝑓ℎ of this differential equation is given by 

𝑓(𝑥) =
∫ (ℎ(𝑦) − 𝑃ℎ)
𝑥

𝑎
𝑝(𝑦)𝑑𝑦

𝑝(𝑥)
 

For the function ℎ(𝑥) : = 1{𝑥≤𝑧}(𝑥) let 𝑓𝑧 be the corresponding solution of (4). We will make the following assumptions: 

(A2) Let 𝑝 be a density fulfilling (A1). We assume that for any absolutely continuous function ℎ, the solution 𝑓ℎ of (4) satisfies 

∥∥𝑓ℎ∥∥ ≤ 𝑐1∥ℎ
′∥, ∥∥𝑓ℎ

′∥∥ ≤ 𝑐2∥ℎ
′∥ 

 and ∥∥𝑓ℎ
′′(𝑥)∥∥ ≤ 𝑐3∥∥ℎ

′∥∥, 
where 𝑐1, 𝑐2 and 𝑐3 are constants. 

The Wasserstein bound in Theorem 2 will be a consequence of the following proposition. It is a special case of Theorem 2.4 of 

Eichelsbacher and Löwe [5]. 

Proposition 1.  Let 𝑌 be a random variable distributed according to 𝑝. Let (𝑊,𝑊′) be an exchangeable pair, that is, (𝑊,𝑊′) 
and (𝑊′,𝑊) have the same joint distribution. Assume that 

𝔼(𝑊 −𝑊′ ∣ 𝑊) = 𝜆(𝜓(𝑊)(𝑊) + 𝑅) 
where 𝜓 = 𝑝′/𝑝, 𝜆 ∈ (0,1) and 𝑅 is a random variable. Put 𝛥 = 𝑊 −𝑊′. Then, under assumption (A2), for any uniformly 

Lipschitz function ℎ, we obtain 

sup
∥∥ℎ′∥∥≤1

|𝔼ℎ(𝑊) − 𝔼ℎ(𝑌)| ≤ 𝑐2𝔼 |1 −
1

2𝜆
𝔼(𝛥2 ∣ 𝑊)| +

𝑐3
4𝜆
𝔼|𝛥|3 +

𝑐1
𝜆
√𝔼(𝑅2).

 

3. RESULTS 

      The main result is the following theorem. We recall that, throughout this paper, 𝐶 is a positive constant, and its value may be 

different for each appearance. 

Theorem 2.  Let (𝑋1, … , 𝑋𝑛) follow the joint probability density function (2), where 𝜌 satisfies (1) and let 𝑊𝑛 = 𝑛
−1+

1

2𝑘𝑆𝑛. If 

𝛽 = 1, 𝜌 is of type 𝑘 and (3) is satisfied, then for any uniformly Lipschitz function ℎ, we have  

sup
∥∥ℎ′∥∥≤1

|𝔼ℎ(𝑊) − 𝔼ℎ(𝑌)| ≤ 𝐶𝑛−
1

2𝑘 

where 𝐶 is a constant depending on 𝑏0, 𝑏1, 𝑏2 and 𝑘; the density function of 𝑌 is given by 

𝑝(𝑦) = 𝑐1𝑒
−𝑐2𝑦

2𝑘
, 𝑐2 =

𝐻(2𝑘)(0)

(2𝑘)!
; 

and 𝑐1 is the normalizing constant and  

𝐻(𝑠) = 𝑠2/2 − ln(∫ exp
∞

−∞

(𝑠𝑥)𝑑𝜌(𝑥)). 

Proof. We first construct an exchangeable pair (𝑆𝑛 , 𝑆𝑛′) as follow. Let 𝑆𝑛 = 𝑋1 +⋯+ 𝑋𝑛 and let 𝑋′ = {𝑋1′, … , 𝑋𝑛′}, where for each 

𝑖 fixed, 𝑋𝑖 ′ is an independent copy of 𝑋𝑖 given {𝑋𝑗 , 𝑗 ≠ 𝑖}, i.e., given {𝑋𝑗 , 𝑗 ≠ 𝑖}𝑋𝑖 ′ and 𝑋𝑖 have the same distribution and 𝑋𝑖 ′ s 

conditionally independent of 𝑋𝑖 (see [5, p.964]). Let 𝐼 be a random index independent of all others and uniformly distributed over 

{1, … , 𝑛}. Define 𝑆𝑛′ = 𝑆𝑛 − 𝑋𝐼 + 𝑋𝐼′; then (𝑆𝑛 , 𝑆𝑛′) is an exchangeable pair (see [7, Theorem 3.2]). 
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Let 𝑊𝑛 = 𝑛
−1+

1

2𝑘𝑆𝑛 and 𝑊𝑛′ = 𝑛−1+
1

2𝑘𝑆𝑛′. Then (𝑊𝑛 ,𝑊𝑛′) is also an exchangeable pair. Shao and Zhang [7, Theorem 3.2] 

proved that 

𝔼(𝑊𝑛 −𝑊𝑛′|𝑊𝑛) = 𝑛
−2+

1

𝑘 (
𝐻2𝑘(0)

(2𝑘 − 1)!
𝑊𝑛

2𝑘−1 + 𝑛−1+
1

2𝑘𝑅1), (5) 

and 

𝔼 |1 −
1

2𝜆
𝔼[(𝑊𝑛 −𝑊𝑛′)2|𝑊]| ≤ 𝐶𝑛−

1

2𝑘 (6) 

where 𝑅1 is a random variable satisying 𝑛−1+
1

2𝑘𝔼|𝑅1| ≤ 𝐶𝑛−
1

2𝑘 and 𝜆 = 𝑛−2+
1

𝑘. Next, we consider 
1

𝜆
𝔼|𝑊𝑛 −𝑊𝑛′|

3 =
1

𝑛−2+
1

𝑘

𝔼|𝑋𝐼 − 𝑋𝐼′|
3

=
1

𝑛−2+
1

𝑘

𝔼|𝑋1 − 𝑋1′|
3.

 

Then, 

𝔼|𝑋1 − 𝑋1′|
3 ≤ 𝔼|𝑋1|

3 + 3𝔼|𝑋1
2𝑋1′| + 3𝔼|𝑋1(𝑋1′)

2| + 𝔼|𝑋1′|
3.

 
 

Applying Holder’s inequality, we have 

𝔼|𝑋1
2𝑋1′| ≤ (𝔼|𝑋1|

3)2/3(𝔼|𝑋1′|
3)1/3

= 𝔼|𝑋1|
3  

Therefore, by [7, Lemma 5.5 and Lemma 5.6], we have 
1

𝜆
𝔼|𝑊𝑛 −𝑊𝑛′|3 ≤

8

𝑛−2+
1

𝑘

𝔼|𝑋1|
3

≤
𝐶

𝑛−2+
1

𝑘

.

 (7) 

Applying Proposition 1 with (5-7), the proof is completed.     ◻ 

 

4. CONCLUSION 

In this paper, using the exchangeable pair approach of Stein’s method, an optimal convergence rate for nonnormal approximation in 

the general Curie–Weiss model is achieved. Another version Curie-Weiss is the inhomogeneous Curie-Weiss model with external 

field, where the inhomogeneity is introduced by adding a positive weight to every vertex and letting the interaction strength between 

two vertices be proportional to the product of their weights (see [9, 10]). We expect that our results remain true for this model, 

although if one wants to prove this, extra error terms caused by the approximation with the Curie-Weiss have to be taken into account. 
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