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1. Introduction 

During the last decades, the theory of fractional derivation has gained a lot of attention in the field of mathematics. There isn't a 

standard form for defining fractional derivative. However, the most generally used definitions found in [12] . Khalil et al. [9] came 

up with an innovative solution that extends the standard limit definition of the derivative of a function in order to solve some of 

these and other challenges. Using his novel definition of fractional derivative, he calculated several fractional derivative outcomes. 

In [4, 6, 7, 8] and [1], Khalil et al. provided a new concept of fractional derivative and demonstrated various findings util ising it. 

Almeida et al. developed the following limit definition of the derivative of a function in [2. Using his notion of fractional derivative, 

he also highlighted several key conclusions of fractional derivative. Katugampola [3] recently presented the concept of fractional 

derivative using his new definition. The major goal of this work is to present a limit definition of a function's derivative that obeys 

classical features such as linearity, product rule, quotient rule, and chain rule. [10, 11 for undefined and unexplained concepts and 

words. The differential transform method (DTM) is a numerical approach for solving differential equations. Zhou[17, firstly 

introduced the concept of DTM and by using this new DTM method he solved linear as well as nonlinear IVP in electrical science. 

Recently, a new analytical technique, named Fractional Differential Transform Method (FDTM), is developed to solve fractional 

differential equations (FDEs) which can be found in [18. FDTM forms fractional power series in the same way that DTM forms 

Taylor series. Many authors have done Studies by using Adomian decomposition method about solutions of different types of 

systems of fractional differential equations, which can be found in [14, 15, 27, 28. 

In this paper, we present numerical and analytical solutions for the fractional Riccati differential equation 

𝑦(𝛼) = 𝐴(𝑡) + 𝐵(𝑡)𝑦 + 𝐶(𝑡)𝑦2,  𝑡 > 0, 𝑛 − 1 < 𝛼 ≤ 𝑛 

subject to the initial conditions 

𝑦𝑘(0) = 𝑐𝑘 ,  𝑘 = 0,1, … , 𝑛 − 1, where 𝐴(𝑡), 𝐵(𝑡) and 𝐶(𝑡) are given functions, 𝑐𝑘 , 𝑘 = 0,1, … , 𝑛 − 1, are arbitrary constants and a 

is a parameter describing the order of the fractional derivative. The general response expression contains a parameter describing the 

order of the fractional derivative that can be varied to obtain various responses. In the case of 𝛼 = 1, the fractional equation reduces 

to the classical Riccati differential equation. The importance of this equation usually arises in the optimal control problems. The 

feed back gain of the linear quadratic optimal control depends on a solution of a Riccati differential equation which has to be found 

for the whole time horizon of the control process [14. The existing literature on fractional differential equations tends to focus on 

particular values for the order 𝛼. The value 𝛼 = 1/2 is especially popular. This is because in classical fractional calculus, many of 

the model equations developed used these particular orders of derivatives. In modern applications much more general values of the 

order a appear in the equations and therefore one needs to consider numerical and analytical methods to solve differential equations 

of arbitrary order. 

 

2. Basic Ideas of the Fractional Differential Transform Mehtod (FDTM), Fractional Adomian Decomposition Mehtod 

(FADM) and Con CFDTM 

In this part, we review several key conclusions from the FDTM and FADM, both of which are utilised to generate approximate 

analytical solutions for the in this work (1.1). 

2.1. Basic ideas of the FDTM 

Let the fractional power series of an analytical and continuous function 𝜑(𝜁) in Riemann-Liouville sense is as follows [19]: 

𝜑(𝜁) = ∑  

∞

𝑘=0

Φ(𝑘)(𝜁 − 𝜁0)𝑘/𝛼 
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where 𝛼 and Φ(𝑘) are the order of fraction and FDT of 𝜑(𝜁) respectively. Let fractional IVP, in terms of the Caputo sense are as 

fallows. 

Φ(𝑘) = {
 If 𝑘/𝛼 ∈ 𝑍+,

1

(𝑘/𝛼)!
[
d𝑘/𝛼𝜑(𝜁)

d𝜁𝑘/𝛼
]

𝜁=𝜁0

 for 𝑘 = 0,1,2, … , (𝑞𝛼 − 1)

 If 𝑘/𝛼 ∉ 𝑍+ 0,

 

where, 𝑞 denotes the order of the fractional differential equation under consideration. Now we recall some important theorems of 

FDTM which can be used to find an analytical solution of model of dengue. 

Theorem 2.1 If 𝜑(𝜁) = 𝜓(𝜁) ± 𝑤(𝜁), then Φ(𝑘) = Ψ(𝑘) ± 𝜔(𝑘) 

Theorem 2.2 If 𝜑(𝜁) = 𝜓(𝜁)𝑤(𝜁), then Φ(𝑘) = ∑𝑙=0
𝑘  Ψ(𝑙)𝜔(𝑘 − 𝑙). 

Theorem 2.3 If 𝜑(𝜁) = 𝜓1(𝜁)𝜓2(𝜁) … 𝜓𝑛−1(𝜁)𝜓𝑛(𝜁), then 

Φ(𝑘) = ∑  

𝑘

𝑘𝑛−1=0

∑  

𝑘𝑛−1

𝑘𝑛−2=0

⋯ ∑  

𝑘3

𝑘2=0

∑  

𝑘2

𝑘1=0

Ψ1(𝑘1)Ψ2(𝑘2 − 𝑘1) … Ψ𝑛−1(𝑘𝑛−1 − 𝑘𝑛−2)Ψ𝑛(𝑘 − 𝑘𝑛−1) 

Theorem 2.4 If 𝜑(𝜁) = (𝜁 − 𝜁0)𝑟, then Φ(𝑘) = 𝛿(𝑘 − 𝛼𝑟) where, 

𝛿(𝑘) = {
1  if 𝑘 = 0
0  if 𝑘 ≠ 0

 

Theorem 2.5 If 𝜑(𝜁) = 𝐷𝜁0

𝑞
[𝜓(𝜁)], then Φ(𝑘) =

Γ(𝑞+1+𝑘/𝛼)

Γ(1+𝑘/𝛼)
Ψ(𝑘 + 𝛼𝑞). 

 

2.2. Basic ideas of the FADM 

Now have a look at the fractional differential equation [20] 

𝐷𝛼𝑦(𝜁) = 𝐴(𝜁) + 𝐵(𝜁)𝑦 + 𝐶(𝜁)𝑦2,  𝜁 > 0, 𝑛 − 1 < 𝛼 ≤ 𝑛 

After applying 𝐼𝛼 to the equation 2.2.1, we obtain, 

𝑦 = ∑  

𝑛−1

𝑘=0

𝑐𝑘

𝜁𝑘

𝑘!
+ 𝐼𝛼[𝐴(𝜁) + 𝐵(𝜁)𝑦 + 𝐶(𝜁)𝑦2],  1 ⩽ 𝑖 ⩽ 𝑛 

We adopt ADM to solve the equation 2.2.1. Let 

𝑦 = ∑  

∞

𝑚=0

𝑦𝑚(𝜁) 

and 

𝑁(𝑦) = ∑  

∞

𝑚=0

𝐴𝑚, 

where 𝐴𝑚 are the Adomian polynomials. By using equations. 2.2.3 and 2.2.4 the equation 2.2.2, can be written as, 

∑  

∞

𝑚=0

𝑦𝑚 = ∑  

𝑛−1

𝑘=0

𝑐𝑘

𝜁𝑘

𝑘!
+ 𝐼𝛼 ∑  

∞

𝑚=0

[𝐴(𝜁) + 𝐵(𝜁) ∑  

∞

𝑚=0

 𝑦𝑚 + 𝐶(𝜁) ∑  

∞

𝑚=0

 𝐴𝑚] 

This can be expressed as 

𝑦0(𝜁) = ∑  

𝑛−1

𝑘=0

  𝑐𝑘

𝜁𝑘

𝑘!
+ 𝐼𝛼(𝐴(𝜁))

𝑦𝑚+1(𝜁) = 𝐼𝛼(𝐵(𝜁)𝑦𝑛 + 𝐶(𝜁)𝐴𝑚), 𝑚 ≥ 0

 

The shortened series can be used to approximate the answer 𝑦𝑖 . 

𝜑𝑘 = ∑  

𝑘−1

𝑚=0

𝑦𝑚,  lim
𝑘→∞

 𝜑𝑘 = 𝑦𝑖(𝜁) 

However, in many cases the exact solution in a closed form may be obtained. Moreover, the decomposition series solutions are 

generally converge very rapidly. The convergence of the decomposition series has investigated by several authors [25,26]. 
 

2.3. Basic ideas of the Conformable fractional differential transform method 

Definition 2.6 [1] If 𝜙: [0, ∞) → ℝ be a function and ∀𝛼 ∈ (0,1), then the conformable fractional derivative of 𝜙 of order 𝛼 is 

defined as 

𝐷𝛼(𝜙)(𝑡) = lim
𝜇→0

 
𝜙(𝑡 + 𝜇𝑡1−𝛼) − 𝜙(𝑡)

𝜇
,  𝑡 > 0 

If 𝐷𝛼(𝜙(𝑡)) and lim𝜇→0+  𝜙(𝛼)(𝑡) is exist in (0, 𝑐), where 𝑐 > 0, then 𝛼-derivative is defined as 𝜙(𝛼)(0) = lim𝑡→0+  𝜙(𝛼)(𝑡) 

Definition 2.7 [1] Let 𝜙: [0, ∞) → ℝ and 𝛼 ∈ (𝑛, 𝑛 + 1] be an 𝑛-differentiable at 𝑡, where 𝑡 > 0. Then conformable fractional 

derivative of 𝜙 is defined as 

𝐷𝑛𝛼(𝜙)(𝑡) = lim
𝜇→0

 
𝜙⌈𝛼⌉−1(𝑡 + 𝜇𝑡⌈𝛼⌉−𝛼) − 𝜙⌈𝛼⌉−𝛼(𝑡)

𝜇
,  𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑡 > 0 

where 𝑛 ∈ ℕ and ⌈𝛼⌉ is the smallest integer number greater than or equal to 𝛼. Provided 𝐷𝑛𝛼(𝜙)(0) = lim𝜇→0  𝐷𝑛𝛼(𝜙)(𝑡), 𝜙(𝑡) is 

𝑛-differentiable and 𝐷𝑛𝛼(𝜙)(0) = lim𝜇→0  𝐷𝛼(𝜙)(𝑡), 𝜙(𝑡) exists. 
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Definition 2.8 [1] Let , 0 ≤ 𝛾 ≤ 𝑡 and 𝜙 be a function defined on (𝛾, 𝑡], then New 𝛼-fractional integral is defined by 

𝐼𝛼𝜙(𝑡) = ∫  
𝑡

0

𝜙(𝑡)𝑡𝛼−1𝑑𝑡,  0 < 𝛼 ≤ 1 

provided integral exists. 

Remark 1.4. 2] The most useful result is that 

𝐷𝑛𝛼(𝜙)(𝑡) = 𝑡⌈𝛼⌉−𝛼𝜙⌈𝛼⌉(𝑡). 
where 𝛼 ∈ (𝑛, 𝑛 + 1] and 𝜙 is an (𝑛 + 1)-differentiable function at 𝑡 > 0. Definition 2.9 [11] Let 𝜙(𝑡) is infinitely 𝛼-

differentiable function for some 𝛼 ∈ (0,1]. Conformable fractional differential transform of 𝜙(𝑡) is defined as 

Φ𝛼(𝑡) =
1

𝛼𝑘𝑘!
[(𝑇𝛼

𝑡0𝜙)
(𝑘)

(𝑡)]
𝑡0

 

where (𝑇𝛼
𝑡0𝜙)

(𝑘)
(𝑡) denotes the application of the fractional derivative 𝑘 times. 

Definition 2.10 [11] Let Φ𝛼(𝑘) be the conformable fractional differential transform of 𝜙(𝑡). Inverse conformable fractional 

differential transform of Φ(𝑘) is defined as 

𝜙(𝑡) = ∑  

∞

𝑘=0

Φ𝛼(𝑘)𝑡𝛼𝑘. 

CFDT of initial conditions for integer order derivaties are defined as 

Φ𝛼(𝑘) = {

1

(𝛼𝑘)!
[
𝑑(𝛼𝑘)𝑦(𝑡)

𝑑𝑡(𝛼𝑘)
]

𝑡=𝑡0

 for 𝛼𝑘 ∈ ℤ+

0  for 𝛼𝑘 ∉ ℤ+

 

where Φ𝛼(𝑘) is the fractional differential transform of 𝜙(𝑡). 

Some basic properties of the CFDTM are presented in [11. Let 𝑦(𝑡), 𝑥(𝑡), and 𝑧(𝑡) be functions of time 𝑡 and 𝑌𝛼(𝑘), 𝑋𝛼(𝑘), and 

𝑍𝛼(𝑘) are their corresponding fractional differential transforms with order of fraction 𝛼. Then for constants 𝑐 and 𝑑 the 

followings hold, 

Theorem 2.11 If 𝑦(𝑡) = 𝑐𝑥(𝑡) ± 𝑑𝑧(𝑡), then 𝑌𝛼(𝑘) = 𝑐𝑋𝛼(𝑘) ± 𝑑𝑍𝛼(𝑘). 

Theorem 2.12 If 𝑦(𝑡) = 𝑥(𝑡)𝑧(𝑡), then 𝑌𝛼(𝑘) = ∑𝑟=0
𝑘  𝑋𝛼(𝑟)𝑍𝛼(𝑘 − 𝑟). 

Theorem 2.13 If 𝑦(𝑡) = 𝑡𝑝 then 𝑌𝛼(𝑘) = 𝛿 (𝑘 −
𝑝

𝛼
) where 𝛿(𝑘) = {

1  for 𝑘 = 0
0  for 𝑘 ≠ 0

 

Theorem 2.14 if 𝜙(𝑡) = 𝑇𝛼
𝑡0(𝑦(𝑡)), then Φ𝛼(𝑘) = 𝛼(𝑘 + 1)𝑌𝛼(𝑘 + 1). 

Theorem 2.15 if 𝜙(𝑡) = 𝑇𝛼
𝑡0(𝑦(𝑡)), for 𝑚 < 𝛼 ≤ 𝑚 + 1, then 

Φ𝛼(𝑘) = 𝑌𝛼 (𝑘 +
𝛼

𝛽
) =

Γ(𝑘𝛽 + 𝛼 + 1)

Γ(𝑘𝛽 + 𝛼 − 𝑚)
. 

 

3. Applications 

Example 3.1 We consider the fractional Riccati equation 

𝑦(𝛼) = 1 − 𝑦2 

with the initial condition 𝑦(0) = 0. 𝑦(𝑡) =
𝑒2𝑡𝛼−1

𝑒2𝛼‾ 𝛼+1
 is the exact solution of this equation. 

To derive the solution of above FDE, we use the Adomian decomposition scheme: 

𝑦0 = 𝑦(0) + 𝐼𝛼(1) =
1

Γ(𝛼 + 1)
𝑡𝛼

𝑦𝑛+1 = −𝐼𝛼(𝐴𝑛),  𝑛 ≥ 0

 

Using the above recursive relationship, the first few terms of the decomposition series are given by 

𝑦0 =
1

Γ(𝛼 + 1)
𝑡𝛼

𝑦1 = 𝐼𝛼(𝑦0
2) = −

Γ(1 + 2𝛼)

𝛼2Γ(1 + 3𝛼)
𝑡3𝛼

𝑦2 = 𝐼𝛼(2𝑦0𝑦1) =
16Γ(2𝛼)Γ(4𝛼)

𝛼Γ(1 + 3𝛼)Γ(1 + 5𝛼)
𝑡5𝛼

𝑦3 = 𝐼𝛼(2𝑦0𝑦2 + 𝑦1
2) = −

(32𝛼2Γ(2𝛼)Γ(4𝛼)Γ(1 + 3𝛼) + Γ(1 + 2𝛼)2Γ(1 + 5𝛼))Γ(1 + 6𝛼)

𝛼4Γ(1 + 3𝛼)2Γ(1 + 5𝛼)Γ(1 + 7𝛼)
𝑡7𝛼

 

The general form of the approximation 𝑦(𝑡) is given by 

𝑦(𝑡) =
1

Γ(𝛼 + 1)
𝑡𝛼 −

Γ(1 + 2𝛼)

𝛼2Γ(1 + 3𝛼)
𝑡3𝛼 +

16Γ(2𝛼)Γ(4𝛼)

𝛼Γ(1 + 3𝛼)Γ(1 + 5𝛼)
𝑡5𝛼 … 

To derive the solution of above FDE, we use the Fractional Differential Transform Method scheme: 

By using Theorems 2.4 and 2.5, Eq. (3.1) transforms to 

𝑌(𝑘 + 𝛼𝜃) =
Γ(1 + 𝑘/𝜃)

Γ(𝛼 + 1 + 𝑘/𝜃)
[𝛿(𝑘) − ∑  

𝑘

𝑘1

 𝑌(𝑘1)𝑌(𝑘 − 𝑘1)] 

and using Eq. (2.1.2), initial conditions can be transformed as follows: 
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𝑌(𝑘) = 0,   for 𝑘 = 0,1, … , 𝛼𝜃 − 1 

Using Eqs. (3.2) and (3.3), Y(k) is obtained for different values of 𝛼 and then using Eq. (2.1.2), y(x) is evaluated. 

𝑦(𝑡) =
1

Γ(𝛼 + 1)
𝑡𝛼 −

Γ(1 + 2𝛼)

𝛼2Γ(1 + 3𝛼)
𝑡3𝛼 +

16Γ(2𝛼)Γ(4𝛼)

𝛼Γ(1 + 3𝛼)Γ(1 + 5𝛼)
𝑡5𝛼 … 

To derive the solution of above FDE, we use the Conformable Fractional Differential Transform Method scheme: 

By the help of Theorem 2.12, Theorem 2.13 and Theorem 2.14, we can write 

𝛼(𝑘 + 1)𝑌𝛼(𝑘 + 1) = 𝛿(𝑘) − ∑  

𝑘

𝑙=0

𝑌𝛼(𝑙)𝑌𝛼(𝑘 − 𝑙) 

Thereby, it is obtained that 𝑌𝛼(𝑘 + 1) =
1

𝛼(𝑘+1)
(𝛿(𝑘) − ∑𝑙=0

𝑘  𝑌𝛼(𝑙)𝑌𝛼(𝑘 − 𝑙)) For 𝑘 = 0,1.2, …, the solution by means of CFDTM 

is found as 

𝑦(𝑡) =
𝑡𝛼

𝛼
−

𝑡3𝛼

3𝛼3
+

2𝑡5𝛼

15𝛼5
−

17𝑡7𝛼

315𝛼7
+

62𝑡9𝛼

2835𝛼9
− ⋯ 

The obtained solution of (3.1) above is the fractional power series expansion of the exact solution for the first ten terms. 

 

 
(a) Graph of solution of 3.1 for different (b) Graph of solution of 3.1 for different value of 𝛼 by CFDTM. value of 𝛼 by FDTM. 

 
(c) Graph of solution of 3.1 for different value of 𝛼 by FADM. 

Figure 1: Comparision of the fourth iteration approximate solutions of CFDTM with the FDTM and FADM. Example 3.2 We 

consider the fractional Riccati equation 

𝑦(𝛼) = 1 + 2𝑦 − 𝑦2 

with the initial condition 𝑦(0) = 0. 

Exact solution of this equation is 𝑦(𝑡) = 1 + √2tanh (√2𝑡 +
1

2
log (

√2−1

√2+1
)), Following the analysis presented above gives the 

recurrence relation 

𝑦0 = 𝑦(0) + 𝐼𝛼(1) =
1

Γ(𝛼 + 1)
𝑡𝛼

𝑦𝑛+1 = 𝐼𝛼(2𝑦𝑛 − 𝐴𝑛),  𝑛 ≥ 0,

 

where 𝐴𝑛 are Adomian polynomials for the nonlinear term 𝐹(𝑦) = 𝑦2. Using the above recursive relationship and Mathematica, 

the first few terms of the decomposition series are given by 
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𝑦0  =
1

Γ(𝛼 + 1)
𝑡𝛼

𝑦1  = 𝐼𝛼(2𝑦0 − 𝑦0
2) =

21−2𝛼cos (𝜋𝛼)Γ(1/2 − 𝛼)

√𝜋𝛼Γ(𝛼)
𝑡2𝛼 −

2Γ(2𝛼)

Γ(𝛼)Γ(1 + 𝛼)Γ(1 + 3𝛼)
𝑡3𝛼

𝑦2  = 𝐼𝛼(2𝑦1 − 2𝑦0𝑦1) =
33−2𝛼cos (𝜋𝛼)Γ(1/2 − 𝛼)

√𝜋Γ(𝛼)Γ(1 + 3𝛼)
𝑡3𝛼 −

2Γ(2𝛼)

Γ(𝛼)Γ(1 + 𝛼)Γ(1 + 4𝛼)
𝑡4𝛼

 +
4Γ(2𝛼)Γ(1 + 4𝛼)

Γ(𝛼)Γ(1 + 𝛼)𝛼Γ(1 + 3𝛼)Γ(1 + 5𝛼)
𝑡5𝛼 +

12Γ(−2𝛼)Γ(3𝛼)sin (2𝜋𝛼)

𝜋Γ(𝛼)Γ(1 + 4𝛼)
𝑡4𝛼

 

and so on. The first eleven terms of the decomposition series are give by 

𝑦(𝑡) =
1

Γ(𝛼 + 1)
𝑡𝛼 +

21−2𝛼cos (𝜋𝛼)Γ(1/2 − 𝛼)

√𝜋𝛼Γ(𝛼)
𝑡2𝛼 −

2Γ(2𝛼)

Γ(𝛼)Γ(1 + 𝛼)Γ(1 + 3𝛼)
𝑡3𝛼 ⋯ 

To derive the solution of above FDE, we use the Fractional Differential Transform Method scheme: 

By using Theorems 2.4 and 2.5, Eq. (1) transforms to 

𝑌(𝑘 + 𝛼𝜃) =
Γ(1 + 𝑘/𝜃)

Γ(𝛼 + 1 + 𝑘/𝜃)
[𝛿(𝑘) + 2𝑌(𝑘) − ∑  

𝑘

𝑘1

 𝑌(𝑘1)𝑌(𝑘 − 𝑘1)] 

and using Eq. (2.1.2), initial conditions can be transformed as follows: 

𝑌(𝑘) = 0,   for 𝑘 = 0,1, … , 𝛼𝜃 − 1 

Using Eqs. (3.5) and (3.6), Y(k) is obtained for values of 𝛼 = 1/2 and 𝜃 = 2, then using Eq. (2.1.2), y(x) is evaluated. 

𝑦(𝑡) =
2

√𝜋
𝑡1/2 + 2𝑡 +

16(𝜋 − 1)

3𝜋3/2
𝑡3/2 +

𝜋 − 4

𝜋
𝑡2 −

32(3𝜋2 + 44𝜋 − 32)

45𝜋5/2
𝑡5/2 + ⋯ 

To derive the solution of above FDE, we use the Conformable Fractional Differential Transform Method scheme: 

By the help of Theorem 2.12, Theorem 2.13 and Theorem 2.14, we can write 

𝛼(𝑘 + 1)𝑌𝛼(𝑘 + 1) = 𝛿(𝑘) + 2𝑌𝛼(𝑘) − ∑  

𝑘

𝑙=0

𝑌𝛼(𝑙)𝑌𝛼(𝑘 − 𝑙) 

Thereby, it is obtained that 

𝑌𝛼(𝑘 + 1) =
1

𝛼(𝑘 + 1)
(𝛿(𝑘) + 2𝑌𝛼(𝑘) − ∑  

𝑘

𝑙=0

 𝑌𝛼(𝑙)𝑌𝛼(𝑘 − 𝑙)) 

For 𝑘 = 0,1.2, …, the solution by means of CFDTM is found as 

𝑦(𝑡) =
𝑡𝛼

𝛼
+

𝑡2𝛼

𝛼2
+ (

2

3𝛼3
−

1

𝛼2
) 𝑡3𝛼 + (

4

3𝛼4
−

3

𝛼3
) 𝑡4𝛼 + ⋯ 

 
(a) Graph of solution of 3.4 for different (b) Graph of solution of 3.4 for different value of 𝛼 by CFDTM. value of 𝛼 by FDTM. 
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(c) Graph of solution of 3.4 for different value of 𝛼 by FADM. 

 

Figure 2: Comparision of the fourth iteration approximate solutions of CFDTM with the FDTM and FADM. Example 3.3 

Consider the modified alpha fractional differential equation 

𝑦𝛼 + 𝑦 = 0, 𝑦(0) = 1, for 𝛼 ∈ (1,2]. 

Now we will find the solution of this equation by usnig CFDTM. Here Exact solution of 3.7 is 𝑦(𝜁) = 𝑒−
1

𝛼
𝜁𝛼

. By using the 

Theorem 2.12, Theorem 2.13 and Theorem 2.14, we can write the above equation as follow. 

𝛼(𝑘 + 1)𝑌𝛼(𝑘 + 1) + 𝑌𝛼(𝑘) = 0,  𝑌𝛼(0) = 1 

As a result, the recurrence relation is as follows: 

𝑌𝛼(𝑘 + 1) = −
1

𝛼(𝑘 + 1)
𝑌𝛼(𝑘),  𝑌𝛼(0) = 1 

Take 𝑘 = 0,1,2, … , 𝑛 

𝑌𝛼(1) = −
1

𝛼
𝑌𝛼(0) = −

1

𝛼

𝑌𝛼(2) = −
1

2𝛼
𝑌𝛼(1) =

1

2! 𝛼2

𝑌𝛼(3) = −
1

3𝛼
𝑌𝛼(2) = −

1

3! 𝛼3

⋮

𝑌𝛼(𝑛) =
(−1)𝑛

𝑛! 𝛼𝑛
.

 

Hence the solution of 3.7 by using MFDTM can be written as, 

𝑦(𝜁) = ∑  

∞

𝑛=0

(−1)𝑛

𝑛! 𝛼𝑛
𝑡𝑛𝛼 = 𝑒−

1
𝛼

𝑡𝛼
 

Now graphical nature of the solution of the equation by using FADM ,CFDTM and FDTM are shown in the figure. 

 

 
(a) Graph of solution of 3.7 for different (b) Graph of solution of 3.7 for different value of 𝛼 by CFDTM. value of 𝛼 by FDTM. 
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(c) Graph of solution of 3.7 for different value of 𝛼 by FADM. 

Figure 3: Comparision of the fourth iteration approximate solutions of CFDTM with the FDTM and FADM. 

 

4. Conclusion 

This work uses FDTM, CFDTM and FADM to solve a non-linear fractional order mathematical model on dengue. Furthermore, 

the fractional model solution produced by CFDTM is associated with the solution of the same model estimated by FADM and 

FDTM for different fractional orders. Two alternative strategies FADM, FDTM and CFDTM have been used to solve and analyse 

a non-linear fractional order mathematical model. In terms of infinite series for various orders and by specifying fixed components 

with various time intervals, an approximate solution to the specified model is established. The Python programme is used to analyse 

the solution numerically and visually. The outcomes of these numerical simulations have been positive. 
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