Metamaterial Based Semi-Circular Monopole Antenna for Multiband Applications

1Divya Rai, 2Dinesh Kumar Rajoriya,

1Ph.D Scholars, 2Former Principal and Dean Faculty of Engineering,
1Department of Electronics and Communication Engineering,
1SORT, Peoples University, Bhopal, India

Abstract: In this article, a metamaterial based semi-circular monopole is presented for multiband applications. Presented antenna built of a simple semi-circular shaped monopole on the top of substrate and 3 × 2 split ring resonators are etched on its ground plane side. Antenna is intended on FR4 material with εr = 4.3 and thickness h = 1.59 mm. The antenna exhibits the multiband characteristic from 1.2 GHz to 4.5 GHz, 5.2 GHz to 11.3 GHz and 12.8 GHz to 18.2 GHz respectively. The radiation pattern of the antenna in the H-plane is virtually omni-directional, while the radiation pattern in the E-plane is directional. The maximum Gain of designed antenna 1.5 dB in the band and it also radiation efficiency is greater than 75% within the operating band. The antenna has the potential to be beneficial for multiband current civil and military communication systems, as well as medical imaging and vehicle radar.

Index Terms: Multi-band antenna, metamaterial, SRR

I. INTRODUCTION

Nowadays, research in the field of wireless technology has exploded in recent years as a direct result of the proliferation of newly developed technologies as well as the sharp rise in the number of subscribers requests and the antenna fulfils an extremely important function in this regard, as a direct consequence of this, the design of small size, low-profile, multipurpose antennas for upcoming multifunctional wireless systems has taken place. Simultaneously, multiband smart antennas have garnered considerable interest as a result of their capacity to incorporate a number of communication protocols inside a single space-saving design [1–3]. An antenna for multi-band applications can be designed using metamaterial. The best way to explain metamaterials is to think of them as man-made structures that have been built in such a way as to provide specific electromagnetic characteristics that do not occur in nature [4–5]. In the field of optics and microwaves, metamaterials have the potential to be utilised in a wide number of applications, including the development of novel forms of antenna, beam steers; modulators; filters and microwave couplers [6–7].

II. LITERATURE REVIEW

A dual-band patch antenna that employs metamaterial–EBG incorporated into its radiating edge is described in [8]. Low frequencies are governed by the combination of cavity and dispersive nature of EBG, whereas high frequencies are determined by the size of cavity without EBG and a high-directivity electromagnetic bandgap design such as mushroom is proposed in [9]. In [10], double H metamaterial structures have been proposed and metamaterial is also utilised for bandwidth and efficiency enhancement. In [11] illustrates the effect that triangular complementary split ring resonators (CSRR) have on Wi-Fi patch antennas and two split-ring radiating elements based, inspired by metamaterials, are given for use in WLAN and WiMAX applications in [12]. Metamaterial-inspired antennas are described in a number of publications [13–16]. Recently, a monopole antenna has a single-cell metamaterial loaded into it, and it functions in three different bands as reported in [17]. In addition to this, the band-gap property of EBG has been put to extensive use to enhance the performance of printed antennas in terms of both efficiency and impedance matching [18]. In this article metamaterial-based antenna for multi-band applications is proposed and it contains of semi-circular shaped monopole radiator and the ground plane with metamaterial design. The presented antenna operates in multiband frequency such as from 1.2 GHz to 4.5 GHz, 5.2 GHz to 11.3 GHz and 12.8 GHz to 18.2 GHz respectively.

III. ANTENNA STRUCTURE AND DESIGN PARAMETERS

Fig. 1 illustrates the layout that will be used for the proposed multi-band metamaterial monopole antenna, in which the radiating patch is a basic semi-circle shaped monopole, two rectangle ground plane on the top for CPW feed and back portion of the substrate, 3x2 SRR array has been designed. SRRs are used as a metamaterial structure to achieve multiband performance in this instance. The semi-circular-shaped monopole antenna is intended on FR4 material with dielectric constant 4.3 and thickness of the substrate is 1.59 mm. Size of substrate is 40 mm x 45 mm.
Both ground size of antenna is 9.1 mm × 22.0 mm, optimized feed width is 3.0 mm, optimized width of the semi-circular patch’s radius is 12.3 mm and the SRR-shaped cut into the ground plane side of the patch with radius of 8 mm and 7 mm respectively. The designed antenna’s dimension and layout is shown in Fig. 1

IV. MEMAMATERIAL ANALYSIS

Metamaterial substrate were first studied in the early 20th centuries. In 1967, a Russian physicist by the name of Victor suggested materials with a negative index of refraction and claimed that such materials could permit light to pass through it. He demonstrated the anti-parallel nature of the wave propagation and vector direction of the Poynting vector. This is the reverse of how waves travel through materials that are naturally occurring. John showed that it is possible to create metamaterials in a practical manner. A negative refractive index is one of the most distinguishing characteristics of a metamaterial, which is a type of man-made substance with electromagnetic properties that do not occur in nature and its properties as shown in Fig 2 [19].

V. ANALYSIS OF METAMATERIAL STRUCTURE

A. SRR (Split Ring Resonator)

The term “mu-negative metamaterial” refers to a type of metamaterial that displays unusually high levels of a property known as “negative permeability”. These types of materials can be produced by manufacturing two circular metallic rings, each of which has splits on the opposite side, on a dielectric material using a technique known as SRR. The rings are isolated by a gap in the central part. The magnetic resonance is caused by splits in the rings as well as the space in between the rings. If the magnetic field used to excite the rings is aligned so that it is perpendicular to the plane in which the rings are arranged, then the currents that are induced along the rings will cause the generation of magnetic dipole moments. This structure, as a result, demonstrates plasmonic negative permeability function. Fig. 3 provides a representation of the geometry of the SRR as well as its analogous circuit model.

Fig. 3: (a) Geometry of circular shape SRR and (b) equivalent circuit model
VI. PARAMETRIC ANALYSIS

The presented metamaterial-based antenna is displayed Fig. 1 with optimal sizes and material size of 40 mm x 45 mm. The finite element method and 3D electromagnetic software Ansoft HFSS were used to simulate this antenna. Important design considerations include the separation between the ground plane and the patch, the width between both the feed and the ground plane, as well as the ground's breadth and length. These factors have a significant impact on the antenna's performance. Based on the current distribution over the antenna structure, the significant influence of these factors may be supported. Fig. 4 depicts the patch antenna’s current distribution.

Initial resonant frequency: Because of the upper half of the antenna, the frequency of the antenna should be. It has also been seen that the current distribution is on the lower side of the ground plane. This indicates that the distance between the patch and the ground has a significant impact in the antenna's overall performance. Similar to the previous point, the current distribution on the higher edges of the ground plane demonstrates that the width of the ground plane will also have an effect on the broad bandwidth of the antenna.

As shown in Fig. 5, the simulated results demonstrate the impact of ground plane width fluctuation. The ground plane's width starts at 7.7 mm and goes up to 10.7 mm. This is an important factor to consider when determining the S11 bandwidth. When the breadth is increased or decreased, the electromagnetic interaction between the radiating element and ground plane is strengthened or weakened, respectively. Because of this, the bandwidth of proposed antenna is changed. Fig. 6 illustrates the influence of ground width on impedance bandwidth. The width of the ground plane is adjusted up to 9.7 mm. The spacing between the ground and feed was adjusted from 1 mm to 0.2 mm in increments of 0.2 mm, while holding all other parameters constant. Figure 4 shows how shifting all resonant modes across the spectrum can be achieved by varying the ground plane width. Deterioration of the reflection coefficient is caused by an unfavorable ground plane width, whether it is excessively wide or extremely narrow. The edge's current density rises as the gap widens.
VII SIMULATED RESULTS AND DISCUSSION

The impedance bandwidth of proposed antenna exhibits the multiband characteristic from 1.2 GHz to 4.5 GHz, 5.2 GHz to 11.3 GHz and 12.8 GHz to 18.2 GHz respectively as shown in Fig. 7. The deeper resonance frequency can be observed in the proposed antenna at frequencies of 4.5 GHz, 10.2 GHz, and 13.8 GHz respectively. The gain of antenna is good, maximum gain is 1.5 dB as shown in Fig. 8 and radiation efficiency of antenna is approximately more than 95% within the band as shown in Fig. 9. The radiation pattern of the antenna is shown in Fig. 10 that show H-field omni directional and E-field is directional at frequency 2 GHz as well as 3-D radiation patterns shown in the Fig. 11. 3-D pattern shows that radiation intensity of the presented in the plane. A multiband wireless communication system can benefit from this antenna design.
Table 1 shows the comparative analysis of various metamaterial based antenna and proposed structure better than other reported antenna in term of resonating frequency, BW and simple geometry.
Table 1: Comparative analysis of various metamaterial based antenna

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Design geometry</th>
<th>Method Applied</th>
<th>Resonating</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>[8]</td>
<td>MTM–EBG construction</td>
<td>MTM–EBG sections placed on the radiating edges</td>
<td>2.4 and 5.0 GHz</td>
<td>One operating frequency in each of the band gap and passband regions</td>
</tr>
<tr>
<td>[9]</td>
<td>Mushroom-shaped EBG design</td>
<td>Use of metamaterial superstrate</td>
<td>4.6 GHz</td>
<td>High gain antenna compared to conventional antenna for wireless communications</td>
</tr>
<tr>
<td>Proposed design</td>
<td>3 x 2 SRR metamaterial</td>
<td>semi-circular shaped monopole radiator and the ground plane with SRR shaped metamaterial design</td>
<td>4.5 GHz and 7.2 GHz</td>
<td>multiband current civil and military communication systems, as wellas medical imaging and vehicle radar</td>
</tr>
</tbody>
</table>

VIII CONCLUSION AND FUTURE SCOPE

A study is carried out to propose semi-circular shaped monopole with metamaterial based for multiband applications. The performance of the antenna is strongly impacted by the width and length of the ground, in addition to the gap that exists between the ground plane and the radiating patch and the gap that exists between the ground plane and the feed. The antenna has an operating impedance bandwidth from 1.2 GHz to 4.5 GHz, 5.2 GHz to 11.3 GHz and 12.8 GHz to 18.2 GHz respectively and S11 < -10 dB over the operating frequency. The gain and radiation pattern this antenna is stable. Therefore, the planned antenna model is more appropriate for current wireless communications system. In the proposed design is based on SRR metamaterial geometry. In the future, other metamaterial geometry such ELC, CSRR, OCSRR metamaterial and composite metamaterial can be used to design antennas with enhanced performance parameters.

REFERENCES

and optical technology letters, 58(9), pp.2117-2122.

[19] https://www.slideshare.net/cocho/metamateriales