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1. Introduction 

Lindenstrauss and Tzafriri[6] used the idea of an Orlicz function 𝑀 to construct the sequence space 𝑙𝑀 of all sequences of scalars 

(𝑥𝑘) such that ∑ 𝑀∞
𝑘=1 (

|𝑥𝑘|

𝜌
) < ∞ for some 

 𝜌 > 0. The space 𝑙𝑀 equipped with the norm 

∥ 𝑥 ∥= 𝑖𝑛𝑓 {𝜌 > 0: ∑ 𝑀

∞

𝑘=1

(
|𝑥𝑘|

𝜌
) ≤ 1} 

 

is a BK space [3, p. 300] usually called an Orlicz sequence space. The space 𝑙𝑀 is closely related to the space 𝑙𝑝 which is an Orlicz 

sequence space with 𝑀(𝑥) = 𝑥𝑝, 1 ≤ 𝑝 < ∞.                We recall [3, 6] that an Orlicz function M is a function from [0, ∞)  to 

[0, ∞) which is continous, non-decreasing and convex with 𝑀(0) = 0, 𝑀(𝑥) > 0 for all 𝑥 > 0 and 𝑀(𝑥) → ∞ as 𝑥 → ∞. Note that 

an Orlicz function is always unbounded. 

 

An Orlicz function 𝑀 is said to satisfy the 𝛥2-condition for all values of 𝑢 if there exists a constant 𝐾 > 0 such that 𝑀(2𝑢) ≤
𝐾𝑀(𝑢), 𝑢 ≥ 0. It is easy to see that always 𝐾 > 2[4]. A simple example of an Orlicz function which satisfies the 𝛥2-condition for 

all values of 𝑢 is given by 𝑀(𝑢) = 𝑎|𝑢|𝛼(𝛼 > 1), since 𝑀(2𝑢) = 𝑎2𝛼|𝑢|𝛼 = 2𝛼𝑀(𝑢). The Orlicz function 𝑀(𝑢) = 𝑒|𝑢| − |𝑢| −
1 does not satisfy the 𝛥2-condition. 

 

The 𝛥2-condition is equivalent to the inequality 𝑀(𝑙𝑢) ≤ 𝐾(𝑙)𝑀(𝑢) which holds for all values of 𝑢, where 𝑙 can be any number 

greater than unity. 

 

An Orlicz function 𝑀 can always be represented in the following integral form 

𝑀(𝑥) = ∫ 𝑝
𝑥

0

(𝑡)𝑑𝑡 

where 𝑝 known as the kernel of 𝑀, is right differentiable for 𝑡 ≥ 0, 𝑝(0) = 0, 𝑝(𝑡) > 0 for 𝑡 > 0, 𝑝 is non-decreasing and 𝑝(𝑡) →
∞ as 𝑡 → ∞. 

 

Before proceeding with the main results we recall [7; second edition] some terminology and notations. 

 

A paranormed space 𝑋 = (𝑋, 𝑔) is a topological linear space in which the topology is given by a paranorm 𝑔; a real subadditive 

function on 𝑋 such that 𝑔(𝜃) = 0, 𝑔(𝑥) = 𝑔(−𝑥) and such that the scalar multiplication is continuous. In the above, 𝜃 is the zero 

in the complex linear space 𝑋 and continuity of multiplication means that 𝜆𝑛 → 𝜆, 𝑥𝑛 → 𝑥(i.e., 𝑔(𝑥𝑛 − 𝑥) → 0) imply 𝜆𝑛𝑥𝑛 →
𝜆𝑥(i.e., 𝑔(𝜆𝑛𝑥𝑛 − 𝜆𝑥) → 0), for scalars 𝜆 and vectors 𝑥. 

 

A paranorm for which 𝑔(𝑥) = 0 implies 𝑥 = 𝜃 is called total paranorm. 

 

A Fr𝑒chet space is a complete metric linear space, or equivalently a complete totally paranormed space. 

 

Let 𝑤 denote the space of all complex sequences 𝑥 = (𝑥𝑘). Let 𝑋 be a linear subspace of 𝑤 such that 𝑋 is a Fr𝑒chet space with 

continous coordinate projections. Then we say that 𝑋 is an FK space, or a Fr𝑒chet Koordinat space. If the metric of an FK space 𝑋 

is given by a complete norm then we say that 𝑋 is a BK space, i.e. a Banach Koordinat space. 
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A sequence (𝑏𝑘) of elements of a paranormed space (𝑋, 𝑔) is called a Schauder basis for 𝑋 if and only if, for each 𝑥 ∈ 𝑋, there 

exists a unique sequence (𝜆𝑘) of scalars such that 𝑥 = ∑ 𝜆𝑘
∞
𝑘=1 𝑏𝑘, i.e., such that 𝑔(𝑥 − ∑ 𝜆𝑘

𝑛
𝑘=1 𝑏𝑘) → 0(𝑛 → ∞). 

 

An FK space 𝑋 has AK, or has the AK property, if (𝑒𝑘), the sequence of unit vectors, is a Schauder basis for 𝑋. In effect, this means 

that for each 𝑥 = (𝑥𝑘) ∈ 𝑋 we have (𝑥1, 𝑥2, … , 𝑥𝑛, 0,0, … ) = ∑ 𝑥𝑘
𝑛
𝑘=1 𝑒𝑘 → 𝑥(𝑛 → ∞), where the convergence is in the metric of 

𝑋. 

 

Let (𝑋, ∥. ∥) be a Banach space over the complex field 𝐶. Denote by 𝑤(𝑋) the space of all 𝑋-valued sequences. Let 𝑀 be an Orlicz 

function, 𝑢 = (𝑢𝑘) be an arbitrary sequence of scalars such that 𝑢𝑘 ≠ 0(𝑘 = 1,2, … ) and 𝑝 = (𝑝𝑘) be a bounded sequence of 

positive real numbers. 

 

We now introduce the Banach space valued sequence space 𝑙𝑀(𝑋, 𝑝, 𝑢) using an Orlicz function 𝑀 as follows: 

𝑙𝑀(𝑋, 𝑝, 𝑢) = {𝑥 ∈ 𝑤(𝑋): ∑ [𝑀 (
∥𝑢𝑘𝑥𝑘∥

𝜌
)]

𝑝𝑘∞
𝑘=1 < ∞ 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜌 > 0}. 

 

Some well-known spaces are obtained by specializing 𝑋, 𝑀, 𝑝 and 𝑢. 

 

(i) If 𝑋 = ℂ, 𝑝𝑘 = 𝑢𝑘 = 1 for all 𝑘, then 𝑙𝑀(𝑋, 𝑝, 𝑢) = 𝑙𝑀 (Lindenstrauss and Tzafriri [6]). 

 

(ii) If 𝑋 = ℂ, 𝑢𝑘 = 1 for all 𝑘, then 𝑙𝑀(𝑋, 𝑝, 𝑢) = 𝑙𝑀(𝑝) (Parashar and Choudhary [8]). 

 

(iii) If 𝑋 = ℂ, then 𝑙𝑀(𝑋, 𝑝, 𝑢) = 𝑙𝑀(𝑝, 𝑢) (Ahmad and Bataineh [1]). 

 

(iv) If 𝑀(𝑥) = 𝑥, 𝑢𝑘 = 1 for all 𝑘 and 𝑝𝑘 = 𝑝(1 ≤ 𝑝 < ∞) for all 𝑘, then 𝑙𝑀(𝑋, 𝑝, 𝑢) = 𝑙𝑝(𝑋)(Leonard [5]). 

 

We denote 𝑙𝑀(𝑋, 𝑝, 𝑢) as 𝑙𝑀(𝑋, 𝑝) when 𝑢𝑘 = 1 for all 𝑘. 

 

In §2, we propose to study various algebraic and topological properties of the sequence space 𝑙𝑀(𝑋, 𝑝, 𝑢). In §3, certain inclusion 

relations between 𝑙𝑀(𝑋, 𝑝, 𝑢) space have been established. In §4, some information on multipliers for 𝑙𝑀(𝑋, 𝑝, 𝑢) is given. In §5, a 

subspace of 𝑙𝑀(𝑋, 𝑝, 𝑢) has been introduced and some topological properties of it has been discussed. 

 

The following inequalities (see, e.g., [7; first edition, p. 190]) are needed throughout the paper. 

 

Let 𝑝 = (𝑝𝑘) be a bounded sequence of positive real numbers. If 𝐻 =  𝑠𝑢𝑝𝑘𝑝𝑘, then for any complex 𝑎𝑘 and 𝑏𝑘 , 

(1.1)               |𝑎𝑘 + 𝑏𝑘|𝑝𝑘 ≤ 𝐶(|𝑎𝑘|𝑝𝑘 + |𝑏𝑘|𝑝𝑘), 

 

where 𝐶 = 𝑚𝑎𝑥(1, 2𝐻−1). Also for any complex 𝜆, 

(1.2)               |𝜆|𝑝𝑘 ≤ 𝑚𝑎𝑥(1, |𝜆|𝐻). 

 

2. Linear topological structure of 𝑙𝑀(𝑋, 𝑝, 𝑢) spaces 

 

Theorem 2.1. For any Orlicz function 𝑀, 𝑙𝑀(𝑋, 𝑝, 𝑢) is a linear space over the complex field ℂ. 

The proof is a routine verification by using standard techniques and hence is omitted. 

 

Theorem 2.2.  𝑙𝑀(𝑋, 𝑝, 𝑢) is a topological linear space, paranormed by 

(2.1)                               𝑔(𝑥) = 𝑖𝑛𝑓 {𝜌𝑝𝑛/𝐺: (∑ [𝑀 (
∥ 𝑢𝑘𝑥𝑘 ∥

𝜌
)]

𝑝𝑘
∞

𝑘=1

)

1

𝐺

≤ 1} 

where 𝐺 = 𝑚𝑎𝑥(1, 𝑠𝑢𝑝𝑘𝑝𝑘). 

 

The proof uses ideas similar to those used (e.g.) in [8, p. 421] and the fact that every paranormed space is a topological linear space 

[9, p. 37]. 

 

Theorem 2.3. Let 1 ≤ 𝑝𝑘 < ∞, then 𝑙𝑀(𝑋, 𝑝, 𝑢) is a Fr𝑒chet space paranormed by (2.1). 

 

Proof. Let (𝑥𝑖) be a Cauchy sequence in 𝑙𝑀(𝑋, 𝑝, 𝑢). Let 𝑟, 𝑢0 and 𝑥0 be fixed. Then for each 
𝜖

𝑟𝑢0𝑥0
> 0 there exists a positive 

integer 𝑁 such that 

𝑔(𝑥𝑖 − 𝑥𝑗) <
𝜖

𝑟𝑢0𝑥0

, 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑖, 𝑗 ≥ 𝑁. 

Using definition of paranorm, we get 
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(∑ [𝑀 (
∥𝑢𝑘

𝑖 𝑥𝑘
𝑖 −𝑢𝑘

𝑗
𝑥𝑘

𝑗
∥

𝑔(𝑥𝑖−𝑥𝑗)
)]

𝑝𝑘

∞
𝑘=1 )

1/𝐺

≤ 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗 ≥ 𝑁. 

Thus 

∑ [𝑀 (
∥ 𝑢𝑘

𝑖 𝑥𝑘
𝑖 − 𝑢𝑘

𝑗
𝑥𝑘

𝑗
∥

𝑔(𝑥𝑖 − 𝑥𝑗)
)]

𝑝𝑘∞

𝑘=1

≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗 ≥ 𝑁. 

Since 1 ≤ 𝑝𝑘 < ∞, it follows that 

𝑀 (
∥ 𝑢𝑘

𝑖 𝑥𝑘
𝑖 − 𝑢𝑘

𝑗
𝑥𝑘

𝑗
∥

𝑔(𝑥𝑖 − 𝑥𝑗)
) ≤ 1, 

for each 𝑘 ≥ 1 and for all 𝑖, 𝑗 ≥ 𝑁. Hence one can find 𝑟 > 0 with 
𝑢0𝑥0

2
𝑟𝑝 (

𝑢0𝑥0

2
) ≥ 1, where 𝑝 is the kernel associated with 𝑀, 

such that 

𝑀 (
∥ 𝑢𝑘

𝑖 𝑥𝑘
𝑖 − 𝑢𝑘

𝑗
𝑥𝑘

𝑗
∥

𝑔(𝑥𝑖 − 𝑥𝑗)
) ≤ (

𝑢0𝑥0

2
) 𝑟𝑝 (

𝑢0𝑥0

2
) . 

Using the integral representation of Orlicz function 𝑀, we get 

∥ 𝑢𝑘
𝑖 𝑥𝑘

𝑖 − 𝑢𝑘
𝑗

𝑥𝑘
𝑗

∥ ≤
𝑟𝑢0𝑥0

2
𝑔(𝑥𝑖 − 𝑥𝑗)

 <
𝜖

2
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗 ≥ 𝑁

 

Hence (𝑢𝑖𝑥𝑖) is a Cauchy sequence in 𝑋 which implies that (𝑥𝑖) is Cauchy in 𝑋 since 𝑢 is an arbitrary fixed sequence of parameters 

such that 𝑢𝑘 ≠ 0 for each 𝑘. Therefore, for each 𝜖(0 < 𝜖 < 1), there exists a positive integer 𝑁 such that 

 

∥ 𝑥𝑖 − 𝑥𝑗 ∥< 𝜖 for all 𝑖, 𝑗 ≥ 𝑁. 

 

Now, using continuity of 𝑀, we find that 

(∑ [𝑀 (
∥ 𝑢𝑘 (𝑥𝑘

𝑖 − lim
𝑗→∞

𝑥𝑘
𝑗
) ∥

𝜌
)]

𝑝𝑘
𝑁

𝑘=1

)

1/𝐺

≤ 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≥ 𝑁. 

Thus 

(∑ [𝑀 (
∥ 𝑢𝑘(𝑥𝑘

𝑖 − 𝑥𝑘) ∥

𝜌
)]

𝑝𝑘𝑁

𝑘=1

)

1/𝐺

≤ 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≥ 𝑁. 

Since 𝑁 is arbitrary, by taking infimum of such 𝜌’s we get 

inf {𝜌𝑝𝑛 𝐺⁄ ∶ (∑ [𝑀 (
∥ 𝑢𝑘(𝑥𝑘

𝑖 − 𝑥𝑘) ∥

𝜌
)]

𝑝𝑘∞

𝑘=1

)

1

𝐺

≤ 1} 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≥ 𝑁. 

Hence 𝑔(𝑥𝑖 − 𝑥) < 𝜖 for all 𝑖 ≥ 𝑁. That is to say that (𝑥𝑖) converges to 𝑥 in the paranorm of 𝑙𝑀(𝑋, 𝑝, 𝑢). Since (𝑥𝑖) ∈ 𝑙𝑀(𝑋, 𝑝, 𝑢) 

and 𝑀 is continous, it follows that 𝑥 ∈ 𝑙𝑀(𝑋, 𝑝, 𝑢). 

Corollary 2.4. If 𝑝 is a constant sequence, then 𝑙𝑀(𝑋, 𝑝, 𝑢) is a Banach space for 𝑝 ≥ 1 and a complete 𝑝-normed space for 𝑝 < 1. 

 

Definition 2.5[2] A linear subspace 𝑌 of 𝑤(𝑋) is a generalized FK space (resp. a generalized BK space) if 𝑌 is a Fr𝑒′chet space 

(resp. a Banach space) with continous coordinate projections. 

 

In case 𝑋 = ℂ, then 𝑌 becomes an FK space (resp. a BK space). 

 

Theorem 2.6. Let 1 ≤ 𝑝𝑘 < ∞, then 𝑙𝑀(𝑋, 𝑝) is a generalized FK space paranormed by (2.1). 

 

Proof.   In view of Theorem 2.3, it is sufficient to show that the coordinate functionals 𝑃𝑖: 𝑙𝑀(𝑋, 𝑝) → 𝑋, where 𝑃𝑖(𝑥) = 𝑥𝑖  are 

continuous. 

 

For 𝜖 > 0 let 𝛿 > 0 be such that 0 < 𝛿 < 1 and 𝛿 ≤ 𝑀(𝜖). 

 

Let 𝑔(𝑥) < 𝛿 so that ∑ [𝑀 (
∥𝑥𝑘∥

𝑔(𝑥)
)]

𝑝𝑘∞
𝑘=1 ≤ 1 

𝑇ℎ𝑖𝑠 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡   ∑ [𝑀 (
∥ 𝑥𝑘 ∥

𝛿
)]

𝑝𝑘
∞

𝑘=1

≤ 1 

𝑎𝑛𝑑 𝑠𝑜         [𝑀 (
∥ 𝑥𝑘 ∥

𝛿
)]

𝑝𝑘

≤ 1 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑘 ≥ 1. 
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As 1 ≤ 𝑝𝑘 < ∞, so 𝑀 (
∥𝑥𝑘∥

𝛿
) ≤ 1 for each 𝑘 ≥ 1. 

Since 0 < 𝛿 < 1 and 𝑀 is convex 
1

𝛿
𝑀(∥ 𝑥𝑘 ∥) ≤ 𝑀 (

∥𝑥𝑘∥

𝛿
) ≤ 1 which implies that 𝑀(∥ 𝑥𝑘 ∥) ≤ 𝛿 ≤ 𝑀(𝜖). 

 

Since 𝑀 is non-decreasing, we have ∥ 𝑥𝑘 ∥< 𝜖 for each 𝑘 ≥ 1 and hence ∥ 𝑥𝑘 ∥< 𝜖 for each 𝑘. Thus the coordinate functionals are 

continuous and this completes the proof of the theorem. 

 

Corollary 2.7. If 𝑝 is a constant sequence and 𝑝 ≥ 1, then 𝑙𝑀(𝑋, 𝑝) is a generalized BK space. 

 

3. Inclusion between 𝑙𝑀(𝑋, 𝑝, 𝑢) spaces 

 

We now investigate some inclusion relations between 𝑙𝑀(𝑋, 𝑝, 𝑢) spaces. 

 

Theorem 3.1. If 𝑝 = (𝑝𝑘) and 𝑞 = (𝑞𝑘) are bounded sequences of positive real numbers with 0 < 𝑝𝑘 ≤ 𝑞𝑘 < ∞ for each 𝑘, then 

for any Orlicz function 𝑀, 𝑙𝑀(𝑋, 𝑝, 𝑢) ⊆ 𝑙𝑀(𝑋, 𝑞, 𝑢). 

 

Proof. Let 𝑥 ∈ 𝑙𝑀(𝑋, 𝑝, 𝑢). Then there exists some 𝜌 > 0 such that ∑ [𝑀 (
∥𝑢𝑘𝑥𝑘∥

𝜌
)]

𝑝𝑘∞
𝑘=1 < ∞. This implies that 𝑀 (

∥𝑢𝑘𝑥𝑘∥

𝜌
) ≤ 1 for 

sufficiently large values of 𝑘, say 𝑘 ≥ 𝑛0 for some fixed 𝑛0 ∈ 𝑁. Since 𝑀 is non-decreasing and 𝑝𝑘 ≤ 𝑞𝑘, we have 

∑ [𝑀 (
∥ 𝑢𝑘𝑥𝑘 ∥

𝜌
)]

𝑞𝑘
∞

𝑘≥𝑛0

≤ ∑ [𝑀 (
∥ 𝑢𝑘𝑥𝑘 ∥

𝜌
)]

𝑝𝑘
∞

𝑘≥𝑛0

< ∞. 

This shows that 𝑥 ∈ 𝑙𝑀(𝑋, 𝑞, 𝑢) and completes the proof. 

 

Theorem 3.2. If 𝑟 = (𝑟𝑘) and 𝑡 = (𝑡𝑘) are bounded sequences of positive real numbers with 0 < 𝑟𝑘 , 𝑡𝑘 < ∞ and if 𝑝𝑘 =
𝑚𝑖𝑛(𝑟𝑘 , 𝑡𝑘), 𝑞𝑘 = 𝑚𝑎𝑥(𝑟𝑘 , 𝑡𝑘), then for any Orlicz function 𝑀, 𝑙𝑀(𝑋, 𝑝, 𝑢) = 𝑙𝑀(𝑋, 𝑟, 𝑢)⋂𝑙𝑀(𝑋, 𝑡, 𝑢) and 𝑙𝑀(𝑋, 𝑞, 𝑢) = 𝐺, where 

𝐺 is the subspace of 𝑤 generated by 𝑙𝑀(𝑋, 𝑟, 𝑢)⋃𝑙𝑀(𝑋, 𝑡, 𝑢). 

 

Proof. It follows from Theorem 3.1 that 𝑙𝑀(𝑋, 𝑝, 𝑢) ⊆ 𝑙𝑀(𝑋, 𝑟, 𝑢)⋂𝑙𝑀(𝑋, 𝑡, 𝑢) and that 𝐺 ⊆ 𝑙𝑀(𝑋, 𝑞, 𝑢). 

 

For any complex 𝜆, |𝜆|𝑝𝑘 ≤ 𝑚𝑎𝑥(|𝜆|𝑟𝑘, |𝜆|𝑡𝑘), thus 𝑙𝑀(𝑋, 𝑟, 𝑢)⋂𝑙𝑀(𝑋, 𝑡, 𝑢) ⊆ 𝑙𝑀(𝑋, 𝑝, 𝑢). 

 

Let 𝐴 = {𝑘: 𝑟𝑘 ≥ 𝑡𝑘} and 𝐵 = {𝑘: 𝑟𝑘 < 𝑡𝑘}. 

If 𝑥 = (𝑥𝑘) ∈ 𝑙𝑀(𝑋, 𝑞, 𝑢), we write 
𝑦𝑘 = 𝑥𝑘(𝑘 ∈ 𝐴) 𝑎𝑛𝑑 𝑦𝑘 = 0(𝑘 ∈ 𝐵); 𝑎𝑛𝑑

𝑧𝑘 = 0(𝑘 ∈ 𝐴) 𝑎𝑛𝑑 𝑧𝑘 = 𝑥𝑘(𝑘 ∈ 𝐵).
 

Then since 𝑥 = (𝑥𝑘) ∈ 𝑙𝑀(𝑋, 𝑞, 𝑢), there exists some 𝜌 > 0such that ∑ [𝑀 (
∥𝑢𝑘𝑥𝑘∥

𝜌
)]

𝑞𝑘∞
𝑘=1 < ∞. 

Now,  ∑ [𝑀 (
∥𝑢𝑘𝑦𝑘∥

𝜌
)]

𝑟𝑘∞
𝑘=1 = ∑  𝑘∈𝐴 + ∑  𝑘∈𝐵 =  ∑ [𝑀 (

∥𝑢𝑘𝑥𝑘∥

𝜌
)]

𝑞𝑘

𝑘∈𝐴 < ∞ 

and so 𝑦 ∈ 𝑙𝑀(𝑋, 𝑟, 𝑢) ⊆ 𝐺. 

 

Similarly, 𝑧 ∈ 𝑙𝑀(𝑋, 𝑡, 𝑢) ⊆ 𝐺. 

 

Thus, 𝑥 = 𝑦 + 𝑧 ∈ 𝐺. We have proved that 𝑙𝑀(𝑋, 𝑞, 𝑢) ⊆ 𝐺, which gives the required result. 

 

Corollary 3.3. The three conditions 𝑙𝑀(𝑋, 𝑟, 𝑢) ⊆ 𝑙𝑀(𝑋, 𝑡, 𝑢), 𝑙𝑀(𝑋, 𝑝, 𝑢) = 𝑙𝑀(𝑋, 𝑟, 𝑢) and 𝑙𝑀(𝑋, 𝑡, 𝑢) = 𝑙𝑀(𝑋, 𝑞, 𝑢) are 

equivalent. 

 

Corollary 3.4. 𝑙𝑀(𝑋, 𝑟, 𝑢) = 𝑙𝑀(𝑋, 𝑡, 𝑢) if and only if 𝑙𝑀(𝑋, 𝑝, 𝑢) = 𝑙𝑀(𝑋, 𝑞, 𝑢). 

 

4.   The Space of Multipliers of 𝑙𝑀(𝑋, 𝑝, 𝑢) 

 

For any set 𝐸 ⊂ 𝑤(𝑋) the space of multipliers of 𝐸, denoted by 𝑆(𝐸), is given by 

𝑆(𝐸) = {𝑎 = (𝑎𝑘) ∈ 𝑤(𝑋): 𝑎𝑥 = (𝑎𝑘𝑥𝑘) ∈ 𝐸 for all 𝑥 = (𝑥𝑘) ∈ 𝐸}. 

Theorem 4.1. For Orlicz function 𝑀 which satisfies the 𝛥2-condition and Banach algebra 𝑋, we have 𝑙∞(𝑋) ⊆ 𝑆[𝑙𝑀(𝑋, 𝑝, 𝑢)], 
where 𝑙∞(𝑋) = {𝑎 = (𝑎𝑘) ∈ 𝑤(𝑋): 𝑠𝑢𝑝𝑘 ∥ 𝑎𝑘 ∥< ∞}. 

 

Proof.  Let 𝑎 = (𝑎𝑘) ∈ 𝑙∞(𝑋), 𝑇 =   𝑠𝑢𝑝𝑘 ∥ 𝑎𝑘 ∥ and 𝑥 = (𝑥𝑘) ∈ 𝑙𝑀(𝑋, 𝑝, 𝑢). Then ∑ [𝑀 (
∥𝑢𝑘𝑥𝑘∥

𝜌
)]

𝑝𝑘∞
𝑘=1 < ∞ for some 𝜌 > 0. 

Since 𝑀 satisfies the 𝛥2-condition, there exists a constant 𝐾 > 1 such that 
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∑ [𝑀 (
∥ 𝑢𝑘𝑎𝑘𝑥𝑘 ∥

𝜌
)]

𝑝𝑘
∞

𝑘=1

 ≤ ∑ [𝑀 (
∥ 𝑎𝑘 ∥∥ 𝑢𝑘𝑥𝑘 ∥

𝜌
)]

𝑝𝑘
∞

𝑘=1

                 

  ≤ ∑ [𝑀 ((1 + [𝑇])
∥ 𝑢𝑘𝑥𝑘 ∥

𝜌
)]

∞

𝑘=1

𝑝𝑘

         

 ≤ (𝐾(1 + [𝑇]))
𝐻

∑ [𝑀 (
∥ 𝑢𝑘𝑥𝑘 ∥

𝜌
)]

𝑝𝑘
∞

𝑘=1

< ∞ ,            

 

where [𝑇] denotes the integer part of 𝑇. Hence 𝑎 ∈ 𝑆[𝑙𝑀(𝑋, 𝑝, 𝑢)]. 
 

5. A subspace of 𝑙𝑀(𝑋, 𝑝, 𝑢) 

 

In this section we introduce a subspace of 𝑙𝑀(𝑋, 𝑝, 𝑢) and investigate some topological properties of it. 

 

We define ℎ𝑀(𝑋, 𝑝, 𝑢) by 

ℎ𝑀(𝑋, 𝑝, 𝑢) = {𝑥 = (𝑥𝑘) ∈ 𝑤(𝑋): ∑ [𝑀 (
∥ 𝑢𝑘𝑥𝑘 ∥

𝜌
)]

𝑝𝑘
∞

𝑘=1

< ∞𝑓𝑜𝑟𝑒𝑣𝑒𝑟𝑦𝜌 > 0} . 

The space ℎ𝑀(𝑋, 𝑝, 𝑢) is clearly a subspace of 𝑙𝑀(𝑋, 𝑝, 𝑢), and the topology is determined by the paranorm of 𝑙𝑀(𝑋, 𝑝, 𝑢) given by 

(2.1). 

 

Theorem 5.1. Let 1 ≤ 𝑝𝑘 < ∞. Then ℎ𝑀(𝑋, 𝑝, 𝑢) is a Fr𝑒chet space with the paranorm given by (2.1). 

 

Proof. Since ℎ𝑀(𝑋, 𝑝, 𝑢) is a subspace of 𝑙𝑀(𝑋, 𝑝, 𝑢) which is a Fr𝑒chet space under the paranorm given by (2.1), it is sufficient to 

show that ℎ𝑀(𝑋, 𝑝, 𝑢) is closed in 𝑙𝑀(𝑋, 𝑝, 𝑢). Therefore, let (𝑥𝑖) = (𝑥𝑘
𝑖 ) be a sequence in ℎ𝑀(𝑋, 𝑝, 𝑢) such that 𝑔(𝑥𝑖 − 𝑥) → 0 as 

𝑖 → ∞, where 𝑥 = (𝑥𝑘) ∈ 𝑙𝑀(𝑋, 𝑝, 𝑢). 

 

To complete the proof we need to show that ∑ [𝑀 (
∥𝑢𝑘𝑥𝑘∥

𝜉
)]

𝑝𝑘∞
𝑘=1 < ∞ for every 𝜉 > 0. To 𝜉 > 0 there corresponds an integer 𝑚 

such that 𝑔((𝑥𝑚 − 𝑥) < 𝜉/2), and so by the convexity of 𝑀, 

∑ [𝑀 (
∥ 𝑢𝑘𝑥𝑘 ∥

𝜉
)]

𝑝𝑘
∞

𝑘=1

≤ ∑ [
1

2
𝑀 (

∥ 𝑢𝑘
𝑚𝑥𝑘

𝑚 − 𝑢𝑘𝑥𝑘 ∥

𝜉/2
) +

1

2
𝑀 (

∥ 𝑢𝑘𝑥𝑘 ∥

𝜉/2
)]

𝑝𝑘
∞

𝑘=1

           

 ≤ 𝐶 ∑ [𝑀 (
∥ 𝑢𝑘

𝑚𝑥𝑘
𝑚 − 𝑢𝑘𝑥𝑘 ∥

𝑔(𝑥𝑚 − 𝑥)
)]

𝑝𝑘
∞

𝑘=1

+ 𝐶 ∑ [𝑀 (
∥ 𝑢𝑘𝑥𝑘 ∥

𝜉/2
)]

𝑝𝑘
∞

𝑘=1

 < ∞,                                                                                                       

 

 

where 𝐶 = 𝑚𝑎𝑥(1, 2𝐻−1). Thus 𝑥 ∈ ℎ𝑀(𝑋, 𝑝, 𝑢) which shows that ℎ𝑀(𝑋, 𝑝, 𝑢) is complete. 

 

Corollary 5.2. Let 1 ≤ 𝑝𝑘 < ∞, then ℎ𝑀(𝑋, 𝑝, 𝑢) is a generalized FK space with the paranorm given by (2.1). 

 

The proof follows in view of Theorem 2.6 and Theorem 5.1.  
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