BANACH SPACE VALUED SEQUENCE SPACE $l_M(X, p, u)$

INDU BALA

Department of Mathematics Government College, Chhachhrauli (Yamuna Nagar) 135 103, INDIA

Abstract- In this paper, we introduce the Banach space valued sequence space $l_M(X, p, u)$ and examine various algebraic and topological properties of it. Finally we introduce a subspace of $l_M(X, p, u)$ and investigate some topological properties of it. Our results generalize and unify the corresponding earlier results of Kamthan and Gupta [3], Ahmad and Bataineh [1].

2000 AMS Subject Classification: 40A05, 40C05, 46A45.

Keywords and Phrases: AK space, Banach space, Banach algebra, Orlicz function, Paranorm, Sequence space.

1. Introduction

Lindenstrauss and Tzafriri[6] used the idea of an Orlicz function *M* to construct the sequence space l_M of all sequences of scalars (x_k) such that $\sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty$ for some

 $\rho > 0$. The space l_M equipped with the norm

$$\parallel x \parallel = \inf\left\{\rho > 0: \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1\right\}$$

is a BK space [3, p. 300] usually called an Orlicz sequence space. The space l_M is closely related to the space l_p which is an Orlicz sequence space with $M(x) = x^p$, $1 \le p < \infty$. We recall [3, 6] that an Orlicz function M is a function from $[0, \infty)$ to $[0, \infty)$ which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0 for all x > 0 and $M(x) \to \infty$ as $x \to \infty$. Note that an Orlicz function is always unbounded.

An Orlicz function *M* is said to satisfy the Δ_2 -condition for all values of *u* if there exists a constant K > 0 such that $M(2u) \le KM(u)$, $u \ge 0$. It is easy to see that always K > 2[4]. A simple example of an Orlicz function which satisfies the Δ_2 -condition for all values of *u* is given by $M(u) = a|u|^{\alpha}(\alpha > 1)$, since $M(2u) = a2^{\alpha}|u|^{\alpha} = 2^{\alpha}M(u)$. The Orlicz function $M(u) = e^{|u|} - |u| - 1$ does not satisfy the Δ_2 -condition.

The Δ_2 -condition is equivalent to the inequality $M(lu) \leq K(l)M(u)$ which holds for all values of u, where l can be any number greater than unity.

An Orlicz function M can always be represented in the following integral form

$$M(x) = \int_0^x p(t) dt$$

where p known as the kernel of M, is right differentiable for $t \ge 0$, p(0) = 0, p(t) > 0 for t > 0, p is non-decreasing and $p(t) \rightarrow \infty$ as $t \rightarrow \infty$.

Before proceeding with the main results we recall [7; second edition] some terminology and notations.

A paranormed space X = (X, g) is a topological linear space in which the topology is given by a paranorm g; a real subadditive function on X such that $g(\theta) = 0$, g(x) = g(-x) and such that the scalar multiplication is continuous. In the above, θ is the zero in the complex linear space X and continuity of multiplication means that $\lambda_n \to \lambda, x_n \to x$ (i.e., $g(x_n - x) \to 0$) imply $\lambda_n x_n \to \lambda x$ (i.e., $g(\lambda_n x_n - \lambda x) \to 0$), for scalars λ and vectors x.

A paranorm for which g(x) = 0 implies $x = \theta$ is called total paranorm.

A Frechet space is a complete metric linear space, or equivalently a complete totally paranormed space.

Let w denote the space of all complex sequences $x = (x_k)$. Let X be a linear subspace of w such that X is a Frechet space with continous coordinate projections. Then we say that X is an FK space, or a Frechet Koordinat space. If the metric of an FK space X is given by a complete norm then we say that X is a BK space, i.e. a Banach Koordinat space.

A sequence (b_k) of elements of a paranormed space (X, g) is called a Schauder basis for X if and only if, for each $x \in X$, there exists a unique sequence (λ_k) of scalars such that $x = \sum_{k=1}^{\infty} \lambda_k b_k$, i.e., such that $g(x - \sum_{k=1}^n \lambda_k b_k) \to 0 (n \to \infty)$.

An FK space X has AK, or has the AK property, if (e_k) , the sequence of unit vectors, is a Schauder basis for X. In effect, this means that for each $x = (x_k) \in X$ we have $(x_1, x_2, ..., x_n, 0, 0, ...) = \sum_{k=1}^n x_k e_k \to x(n \to \infty)$, where the convergence is in the metric of X.

Let $(X, \|.\|)$ be a Banach space over the complex field *C*. Denote by w(X) the space of all *X*-valued sequences. Let *M* be an Orlicz function, $u = (u_k)$ be an arbitrary sequence of scalars such that $u_k \neq 0 (k = 1, 2, ...)$ and $p = (p_k)$ be a bounded sequence of positive real numbers.

We now introduce the Banach space valued sequence space $l_M(X, p, u)$ using an Orlicz function M as follows: $l_M(X, p, u) = \left\{ x \in w(X) : \sum_{k=1}^{\infty} \left[M\left(\frac{\|u_k x_k\|}{\rho} \right) \right]^{p_k} < \infty \text{ for some } \rho > 0 \right\}.$

Some well-known spaces are obtained by specializing X, M, p and u.

(i) If $X = \mathbb{C}$, $p_k = u_k = 1$ for all k, then $l_M(X, p, u) = l_M$ (Lindenstrauss and Tzafriri [6]).

(ii) If $X = \mathbb{C}$, $u_k = 1$ for all k, then $l_M(X, p, u) = l_M(p)$ (Parashar and Choudhary [8]).

(iii) If $X = \mathbb{C}$, then $l_M(X, p, u) = l_M(p, u)$ (Ahmad and Bataineh [1]).

(iv) If M(x) = x, $u_k = 1$ for all k and $p_k = p(1 \le p < \infty)$ for all k, then $l_M(X, p, u) = l_p(X)$ (Leonard [5]).

We denote $l_M(X, p, u)$ as $l_M(X, p)$ when $u_k = 1$ for all k.

In §2, we propose to study various algebraic and topological properties of the sequence space $l_M(X, p, u)$. In §3, certain inclusion relations between $l_M(X, p, u)$ space have been established. In §4, some information on multipliers for $l_M(X, p, u)$ is given. In §5, a subspace of $l_M(X, p, u)$ has been introduced and some topological properties of it has been discussed.

The following inequalities (see, e.g., [7; first edition, p. 190]) are needed throughout the paper.

Let $p = (p_k)$ be a bounded sequence of positive real numbers. If $H = sup_k p_k$, then for any complex a_k and b_k , (1.1) $|a_k + b_k|^{p_k} \le C(|a_k|^{p_k} + |b_k|^{p_k})$,

where $C = max(1, 2^{H-1})$. Also for any complex λ , (1.2) $|\lambda|^{p_k} \le max(1, |\lambda|^H)$.

2. Linear topological structure of $l_M(X, p, u)$ spaces

Theorem 2.1. For any Orlicz function M, $l_M(X, p, u)$ is a linear space over the complex field \mathbb{C} . The proof is a routine verification by using standard techniques and hence is omitted.

Theorem 2.2. $l_M(X, p, u)$ is a topological linear space, paranormed by

(2.1)
$$g(x) = \inf\left\{\rho^{p_n/G}: \left(\sum_{k=1}^{\infty} \left[M\left(\frac{\parallel u_k x_k \parallel}{\rho}\right)\right]^{p_k}\right)^{\frac{1}{G}} \le 1\right\}$$

where $G = max(1, sup_k p_k)$.

The proof uses ideas similar to those used (e.g.) in [8, p. 421] and the fact that every paranormed space is a topological linear space [9, p. 37].

Theorem 2.3. Let $1 \le p_k < \infty$, then $l_M(X, p, u)$ is a Frechet space paranormed by (2.1).

Proof. Let (x^i) be a Cauchy sequence in $l_M(X, p, u)$. Let r, u_0 and x_0 be fixed. Then for each $\frac{\epsilon}{ru_0x_0} > 0$ there exists a positive integer N such that

$$g(x^i - x^j) < \frac{\epsilon}{ru_0 x_0}$$
, for all $i, j \ge N$.

Using definition of paranorm, we get

$$\left(\sum_{k=1}^{\infty} \left[M\left(\frac{\|u_k^i x_k^i - u_k^j x_k^j\|}{g(x^i - x^j)}\right) \right]^{p_k} \right)^{1/G} \le 1, \text{ for all } i, j \ge N.$$

Thus
$$\sum_{k=1}^{\infty} \left[u_k^i x_k^i - \frac{u_k^j x_k^j}{g(x^i - x^j)} \right]^{p_k} = 0.$$

$$\sum_{k=1}^{\infty} \left[M\left(\frac{\parallel u_k^i x_k^i - u_k^j x_k^j \parallel}{g(x^i - x^j)}\right) \right]^{p_k} \le 1 \text{ for all } i, j \ge N.$$

Since $1 \le p_k < \infty$, it follows that

$$M\left(\frac{\parallel u_k^i x_k^i - u_k^j x_k^j \parallel}{g(x^i - x^j)}\right) \le 1,$$

for each $k \ge 1$ and for all $i, j \ge N$. Hence one can find r > 0 with $\frac{u_0 x_0}{2} rp\left(\frac{u_0 x_0}{2}\right) \ge 1$, where *p* is the kernel associated with *M*, such that

$$M\left(\frac{\parallel u_k^i x_k^i - u_k^j x_k^j \parallel}{g(x^i - x^j)}\right) \le \left(\frac{u_0 x_0}{2}\right) rp\left(\frac{u_0 x_0}{2}\right).$$
function M we get

Using the integral representation of Orlicz function M, we get

$$\| u_k^i x_k^i - u_k^j x_k^j \| \leq \frac{r u_0 x_0}{2} g(x^i - x^j)$$

$$< \frac{\epsilon}{2}, for all \ i, j \geq N$$

Hence $(u^i x^i)$ is a Cauchy sequence in X which implies that (x^i) is Cauchy in X since u is an arbitrary fixed sequence of parameters such that $u_k \neq 0$ for each k. Therefore, for each $\epsilon (0 < \epsilon < 1)$, there exists a positive integer N such that

 $\parallel x^i - x^j \parallel < \epsilon \text{ for all } i, j \ge N.$

Now, using continuity of M, we find that

$$\left(\sum_{k=1}^{N} \left[M\left(\frac{\parallel u_k\left(x_k^i - \lim_{j \to \infty} x_k^j\right) \parallel}{\rho}\right) \right]^{p_k} \right)^{1/G} \le 1, for all \ i \ge N.$$

Thus

$$\left(\sum_{k=1}^{N} \left[M\left(\frac{\parallel u_k(x_k^i - x_k) \parallel}{\rho}\right) \right]^{p_k} \right)^{1/G} \le 1, for all \ i \ge N.$$

Since N is arbitrary, by taking infimum of such ρ 's we get

$$\inf\left\{\rho^{p_n/G}:\left(\sum_{k=1}^{\infty}\left[M\left(\frac{\parallel u_k(x_k^i-x_k)\parallel}{\rho}\right)\right]^{p_k}\right)^{\frac{1}{G}}\leq 1\right\} for \ all \ i\geq N.$$

Hence $g(x^i - x) < \epsilon$ for all $i \ge N$. That is to say that (x^i) converges to x in the paranorm of $l_M(X, p, u)$. Since $(x^i) \in l_M(X, p, u)$ and M is continous, it follows that $x \in l_M(X, p, u)$.

Corollary 2.4. If *p* is a constant sequence, then $l_M(X, p, u)$ is a Banach space for $p \ge 1$ and a complete *p*-normed space for p < 1.

Definition 2.5[2] A linear subspace Y of w(X) is a generalized FK space (resp. a generalized BK space) if Y is a Fre'chet space (resp. a Banach space) with continous coordinate projections.

In case $X = \mathbb{C}$, then Y becomes an FK space (resp. a BK space).

Theorem 2.6. Let $1 \le p_k < \infty$, then $l_M(X, p)$ is a generalized FK space paranormed by (2.1).

Proof. In view of Theorem 2.3, it is sufficient to show that the coordinate functionals $P_i: l_M(X, p) \to X$, where $P_i(x) = x_i$ are continuous.

For $\epsilon > 0$ let $\delta > 0$ be such that $0 < \delta < 1$ and $\delta \le M(\epsilon)$.

Let
$$g(x) < \delta$$
 so that $\sum_{k=1}^{\infty} \left[M\left(\frac{\|x_k\|}{g(x)}\right) \right]^{p_k} \le 1$
This implies that $\sum_{k=1}^{\infty} \left[M\left(\frac{\|x_k\|}{\delta}\right) \right]^{p_k} \le 1$
and so $\left[M\left(\frac{\|x_k\|}{\delta}\right) \right]^{p_k} \le 1$ for each $k \ge 1$.

As $1 \le p_k < \infty$, so $M\left(\frac{\|x_k\|}{\delta}\right) \le 1$ for each $k \ge 1$. Since $0 < \delta < 1$ and M is convex $\frac{1}{\delta}M(\|x_k\|) \le M\left(\frac{\|x_k\|}{\delta}\right) \le 1$ which implies that $M(\|x_k\|) \le \delta \le M(\epsilon)$.

Since *M* is non-decreasing, we have $||x_k|| < \epsilon$ for each $k \ge 1$ and hence $||x_k|| < \epsilon$ for each *k*. Thus the coordinate functionals are continuous and this completes the proof of the theorem.

Corollary 2.7. If p is a constant sequence and $p \ge 1$, then $l_M(X, p)$ is a generalized BK space.

3. Inclusion between $l_M(X, p, u)$ spaces

We now investigate some inclusion relations between $l_M(X, p, u)$ spaces.

Theorem 3.1. If $p = (p_k)$ and $q = (q_k)$ are bounded sequences of positive real numbers with $0 < p_k \le q_k < \infty$ for each k, then for any Orlicz function M, $l_M(X, p, u) \subseteq l_M(X, q, u)$.

Proof. Let $x \in l_M(X, p, u)$. Then there exists some $\rho > 0$ such that $\sum_{k=1}^{\infty} \left[M\left(\frac{\|u_k x_k\|}{\rho}\right) \right]^{p_k} < \infty$. This implies that $M\left(\frac{\|u_k x_k\|}{\rho}\right) \le 1$ for sufficiently large values of k, say $k \ge n_0$ for some fixed $n_0 \in N$. Since M is non-decreasing and $p_k \le q_k$, we have

$$\sum_{k\geq n_0}^{\infty} \left[M\left(\frac{\| u_k x_k \|}{\rho}\right) \right]^{q_k} \leq \sum_{k\geq n_0}^{\infty} \left[M\left(\frac{\| u_k x_k \|}{\rho}\right) \right]^{p_k} < \infty.$$

This shows that $x \in l_M(X, q, u)$ and completes the proof.

Theorem 3.2. If $r = (r_k)$ and $t = (t_k)$ are bounded sequences of positive real numbers with $0 < r_k, t_k < \infty$ and if $p_k = min(r_k, t_k), q_k = max(r_k, t_k)$, then for any Orlicz function $M, l_M(X, p, u) = l_M(X, r, u) \cap l_M(X, t, u)$ and $l_M(X, q, u) = G$, where G is the subspace of w generated by $l_M(X, r, u) \cup l_M(X, t, u)$.

Proof. It follows from Theorem 3.1 that $l_M(X, p, u) \subseteq l_M(X, r, u) \cap l_M(X, t, u)$ and that $G \subseteq l_M(X, q, u)$.

 $|\lambda|^{p_k} \leq max(|\lambda|^{r_k}, |\lambda|^{t_k}),$ λ, $l_M(X, r, u) \cap l_M(X, t, u) \subseteq l_M(X, p, u).$ For any complex thus $B = \{k: r_k < t_k\}.$ $A = \{k: r_k \ge t_k\}$ Let and If $x = (x_k) \in l_M(X, q, u)$, we write $y_k = x_k (k \in A)$ and $y_k = 0 (k \in B)$; and $z_k = 0(k \in A)$ and $z_k = x_k(k \in B)$. some $\rho > 0$ such that $\sum_{k=1}^{\infty} \left[M \left(\frac{\|u_k x_k\|}{\rho} \right) \right]^{q_k} < \infty$. exists $x = (x_k) \in l_M(X, q, u),$ there since Then $\sum_{k=1}^{\infty} \left[M\left(\frac{\|u_k y_k\|}{a}\right) \right]^{r_k} = \sum_{k \in A} + \sum_{k \in B} = \sum_{k \in A} \left[M\left(\frac{\|u_k x_k\|}{a}\right) \right]^{q_k} < \infty$ Now,

and so $y \in l_M(X, r, u) \subseteq G$.

Similarly, $z \in l_M(X, t, u) \subseteq G$.

Thus, $x = y + z \in G$. We have proved that $l_M(X, q, u) \subseteq G$, which gives the required result.

Corollary 3.3. The three conditions $l_M(X,r,u) \subseteq l_M(X,t,u)$, $l_M(X,p,u) = l_M(X,r,u)$ and $l_M(X,t,u) = l_M(X,q,u)$ are equivalent.

Corollary 3.4. $l_M(X, r, u) = l_M(X, t, u)$ if and only if $l_M(X, p, u) = l_M(X, q, u)$.

4. The Space of Multipliers of $l_M(X, p, u)$

For any set $E \subset w(X)$ the space of multipliers of E, denoted by S(E), is given by $S(E) = \{a = (a_k) \in w(X): ax = (a_k x_k) \in E \text{ for all } x = (x_k) \in E\}.$ **Theorem 4.1.** For Orlicz function M which satisfies the Δ_2 -condition and Banach algebra X, we have $l_{\infty}(X) \subseteq S[l_M(X, p, u)]$, where $l_{\infty}(X) = \{a = (a_k) \in w(X): sup_k \parallel a_k \parallel < \infty\}.$

Proof. Let $a = (a_k) \in l_{\infty}(X)$, $T = \sup_k || a_k ||$ and $x = (x_k) \in l_M(X, p, u)$. Then $\sum_{k=1}^{\infty} \left[M\left(\frac{\|u_k x_k\|}{\rho}\right) \right]^{p_k} < \infty$ for some $\rho > 0$. Since M satisfies the Δ_2 -condition, there exists a constant K > 1 such that

$$\begin{split} \sum_{k=1}^{\infty} \left[M\left(\frac{\parallel u_k a_k x_k \parallel}{\rho}\right) \right]^{p_k} &\leq \sum_{k=1}^{\infty} \left[M\left(\frac{\parallel a_k \parallel \parallel u_k x_k \parallel}{\rho}\right) \right]^{p_k} \\ &\leq \sum_{k=1}^{\infty} \left[M\left((1+[T])\frac{\parallel u_k x_k \parallel}{\rho}\right) \right]^{p_k} \\ &\leq \left(K(1+[T]) \right)^H \sum_{k=1}^{\infty} \left[M\left(\frac{\parallel u_k x_k \parallel}{\rho}\right) \right]^{p_k} \\ &\leq \infty \end{split}$$

where [T] denotes the integer part of T. Hence $a \in S[l_M(X, p, u)]$.

5. A subspace of $l_M(X, p, u)$

In this section we introduce a subspace of $l_M(X, p, u)$ and investigate some topological properties of it.

We define $h_M(X, p, u)$ by

$$h_M(X,p,u) = \left\{ x = (x_k) \in w(X) \colon \sum_{k=1}^{\infty} \left[M\left(\frac{\parallel u_k x_k \parallel}{\rho}\right) \right]^{p_k} < \infty for every \rho > 0 \right\}.$$

The space $h_M(X, p, u)$ is clearly a subspace of $l_M(X, p, u)$, and the topology is determined by the paranorm of $l_M(X, p, u)$ given by (2.1).

Theorem 5.1. Let $1 \le p_k < \infty$. Then $h_M(X, p, u)$ is a Frechet space with the paranorm given by (2.1).

Proof. Since $h_M(X, p, u)$ is a subspace of $l_M(X, p, u)$ which is a Frechet space under the paranorm given by (2.1), it is sufficient to show that $h_M(X, p, u)$ is closed in $l_M(X, p, u)$. Therefore, let $(x^i) = (x^i_k)$ be a sequence in $h_M(X, p, u)$ such that $g(x^i - x) \to 0$ as $i \to \infty$, where $x = (x_k) \in l_M(X, p, u)$.

To complete the proof we need to show that $\sum_{k=1}^{\infty} \left[M\left(\frac{\|u_k x_k\|}{\xi}\right) \right]^{p_k} < \infty$ for every $\xi > 0$. To $\xi > 0$ there corresponds an integer m such that $g((x^m - x) < \xi/2)$, and so by the convexity of M,

$$\begin{split} \sum_{k=1}^{\infty} \left[M\left(\frac{\parallel u_k x_k \parallel}{\xi}\right) \right]^{p_k} &\leq \sum_{k=1}^{\infty} \left[\frac{1}{2} M\left(\frac{\parallel u_k^m x_k^m - u_k x_k \parallel}{\xi/2}\right) + \frac{1}{2} M\left(\frac{\parallel u_k x_k \parallel}{\xi/2}\right) \right]^{p_k} \\ &\leq C \sum_{k=1}^{\infty} \left[M\left(\frac{\parallel u_k^m x_k^m - u_k x_k \parallel}{g(x^m - x)}\right) \right]^{p_k} + C \sum_{k=1}^{\infty} \left[M\left(\frac{\parallel u_k x_k \parallel}{\xi/2}\right) \right]^{p_k} \\ &< \infty, \end{split}$$

where $C = max(1, 2^{H-1})$. Thus $x \in h_M(X, p, u)$ which shows that $h_M(X, p, u)$ is complete.

Corollary 5.2. Let $1 \le p_k < \infty$, then $h_M(X, p, u)$ is a generalized FK space with the paranorm given by (2.1).

The proof follows in view of Theorem 2.6 and Theorem 5.1.

REFERENCES:

- 1. Z.U. Ahmad and Ahmad H.A. Bataineh, Some new sequences defined by Orlicz functions, Aligarh Bull. Math., 20(2)(2001), 39-51.
- 2. V.K. Bhardwaj and N. Singh, Banach space valued sequence spaces defined by a modulus, Indian J. Pure Appl. Math., 32(12)(2001), 1869-1882.
- 3. P. K. Kamthan and M. Gupta, Sequence spaces and series, Marcel Dekker Inc., New York, 1981.
- 4. M.A. Krasnoselsky and Y.B. Rutitsky, Convex functions and Orlicz spaces, Groningen, Netherlands, 1961.
- 5. I.E. Leonard, Banach sequence spaces, J. Math. Anal. Appl., 54(1976), 245-265.
- 6. J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10(1971), 379-390.
- 7. I. J. Maddox, Elements of functional analysis, Cambridge Univ. Press, 1970 (first edition), 1988(second edition).
- S.D. Parashar and B. Choudhary, Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math., 25(4)(1994), 381-386.
- 9. A. Wilansky, Modern methods in topological vector spaces, McGraw-Hill, 1978.