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Abstract: In the development of future low-emission vehicles, Machine Learning is playing a significant role, since 

manufacturers progressively hit constraints with existing technology. In addition to independent driving, new improvements 

in reinforcement learning are also quite good at handling complicated parameterisation challenges. Deep reinforced training 

is utilised in this research to derive efficient electric hybrid vehicle operating methods. A wide range of possible driving and 

traffic conditions should be predicted, so that fuel-efficient solutions may be achieved in order to achieve intelligent and 

adaptable processes. This study demonstrates a reinforced learning agent's capacity to learn almost optimum operational 

strategies without previous route knowledge and gives a large potential for more factors to be included in the optimization 

procedure. This paper includes (1) a deep learning context that will enable discovering virtually optimum operating 

strategies. (2) The use of stochastic driver models to increase public generalisation and prevent overfitting of the approach. 

(3) Inclusion of the optimization process of battery modelling with extra power restrictions. The results are simulated and 

comparison graphs are plotted for the derived model. 
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I. Introduction 

With the rising climate crisis, the demand for sustainable alternatives has seen a spike in recent years. Added to it, the exponential 

rise in population in countries like India is taking a toll on the lives of children [1]. Global Burden of Disease 2017 has reported 

that every three minutes, a child dies due to air pollution-related problems. State of Global Air 2020 reported that 116,000 infants 

in India died within a month of birth in 2019 due to air pollution [2]. Not alone in infants, air pollution has its evil wings spread on 

the adults too. In the year 2019, nearly 1.7 million people died due to air pollution. Even under strict lockdown conditions in India, 

in the year 2020, nearly 1, 20,000 people died. At least 12000 people died in Bengaluru alone and so is the case in many major 

cities [3].   

Transportation sources are the major cause of air pollution in India. Sources say that by the year 2030 there will be 200 million 

vehicles on road. Besides, the majority of air pollution-related deaths are linked to diesel vehicles and 66% of air pollution is due 

to diesel vehicles [4]. To address all these issues the government of India (GOI) has shortlisted 102 cities as highly polluted and 

working hard to reduce particulate pollution by 20 to 30 per cent by 2024 [5].  

India, which accounts for around 6% of global CO2 emissions from combustion fuel, is the third-largest nation worldwide to emit 

carbon. In 2019, 21 of the world's 30 most affected cities are in India, according to a survey released by IQAir[6]. Furthermore, 14 

out of twenty the most polluted cities in the world are in India, according to the 2018 World Health Organization (WHO) GPD 

Database. The Indian Government is thus relying more and more on offering discounts and tax benefit incentives to afford high-

cost electric rickshaws and to replace traditional partners [7]. 

Niti Aayog estimates suggest the EVs would end up saving up to 64 per cent of India's energy costs for road transport and cut down 

on up to 37 per cent of carbon emissions. The Indian government has already chalked down its roadmap with a promise of 30 per 

cent electric vehicles on the road by 2025. But the main challenge for Indian electric vehicle makers and the mobility ecosystem is 

that electric cars are affordable.  

A significant number of local and small companies, who made up about two-thirds of the overall revenue of 2019 are dominating 

the Indian electric rickshaw industry primarily[8]. With few existing actors in the industry, the market has boomed over the past 

few years. YC Electric Vehicles is the industry leader in India in an electric rickshaw, with an integrated share of approximately 10 

per cent. Mahindra & Mahindra Limited is followed by approximately 5 per cent. 

The demand for Indian electric vehicles is rising rapidly. The unorganised local players in the industry are a large proportion of 

these markets. These unorganised players import and assemble parts of the vehicle locally, including engines, battery control 

systems and axles [9]. In recent years, founded Indian and foreign manufacturing companies for original equipment (OEMs) have 

also demonstrated their interest in the market, particularly concerning final-course connectivity [10]. 

OEMs are spending more and more on cheap and reliable electric rickshaws and well-known automotive players are launching new 

rickshaw models on this market. Due to their increasing business interest and ability to invest in product growth and distribution 

network expansion, the players will undoubtedly join the market in the coming years [11]. Some of the other key players operating 

in the Indian electric rickshaw market are Hero Electric Vehicles Pvt. Ltd., Terra Motors Corporation, Thukral Electric Bikes, 

ATUL Auto Ltd., Lohia Auto Industries, Kinetic Green Energy & Power Solutions Ltd., Electrotherm (India) Ltd., and Saera 

Electric Auto Pvt. Ltd. 

Autonomous driving, with commitments to safety, convenience and energy economy, has been a priority for business and academics 

in the last decades [12]. The autonomous vehicle problems include other road users' unknown intents, communication among cars 

and with road infrastructure is a feasible technique for raising consciousness and enabling collaboration. Important research is 

happening into autonomous cars, in Europe and in other regions of the world, as well as in the USA and China [13]. It is just time 
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for some persons in this field to outsource everyday travel to a computer by self-employed car before such improvements. In the 

near future urban autonomous transport networks, may be fitted with communication equipment and Global Positioning System 

(GPS), but with costly sensor technology[14]. 

 

II. Literature Review 

S Bacha et. al studied the control techniques for autonomous vehicle path following. In recent years, autonomous trajectories of 

electric vehicles have been significantly improved, especially as new sophisticated control algorithms have appeared. The major 

emphasis of these control algorithms is to ensure excellent performance with minimum distance errors for stability and tracking. 

This research presents an overview of the most frequently utilised techniques in autonomous electric vehicles. First of all, a 

geometric route tracking description is given which depends on the relationship between the dimension of the vehicle and its location 

on the path [15]. A kinematic path tracking is then explored to examine the reaction of the vehicle with regard to its speed and 

acceleration. Failure to use the forces on the vehicle may create some robustness concerns. Consequently, it is necessary to 

investigate dynamic route tracking with sophisticated control techniques. 

The literature has well documented steering control for tracking in autonomous vehicles. In addition, continuous direct time control, 

e.g. vector control, is widely explored on human-driven electric vehicles with numerous engines. The combination of the two 

controls, however, is still not fully understood.  

Chatzikomis et. al evaluates the advantages of torque vectoring in a self-sufficient electric vehicle, either by incorporating the torque 

vector system into the path tracking controller or by using it separately alongside the path tracking control. In obstacle avoidance 

experiments simulated with an empirically verified model for vehicle dynamics, a selection of tracking controllers is compared. For 

selecting controller settings, genetic optimization is utilised. The findings of the simulation show that torque vectoring is good for 

the autonomous reaction of the car [16]. When they are adjusted for the precise tire-road friction situation, the integrated controllers 

function best. However, while operating under reduced friction circumstances, they might potentially exhibit unstable behaviour 

without a refit. On the other hand, different torque vectors give a consistently steady cornering response to a variety of friction 

situations [17]. The route tracking performance is favourable for controllers with the Preview formulation or based on relevant 

reference pathways in relation to the mid-line lane. 

Malan et al. discusses lateral dynamic electric vehicle control in an urban setting driven by public transit concerns to help minimise 

pollution in metropolitan regions. The framework under which the control strategies have been created is the "look-down reference," 

in which onboard sensors interact with road infrastructure to get lateral displacement. This mixed feedback structure is the intended 

control algorithm. The feedback action is carried out by three shackles, where the outside is nonlinear with cascade compensators. 

The feedback measurement is based on an awareness of the road curvature, which is rectified by the car's side displacement. The 

results of testing carried out on a real circuit indicate the effectiveness of the control technique discussed [18]. 

Guo et al examines the trajectory of autonomous vehicles with parametrically unsure, external disruptions and over actuated features 

after their control problem. The lateral movement of independent four-wheel drive electric cars is monitored by a new adaptive 

hierarchical control system. at first, an adaptive sliding mode high-level controlling law is designed for a frontal steering angle 

vector and a foreign yaw moment, in which a flexible logic technique adjusts the uncertain term and switching control gain to 

further moderate the chattering phenomenon and introduces an adaptive limiting layer [19]. Second, a pseudo inverse low-level 

control method is provided in order for the tire's longitudinal forces to be allocated best for the external yaw time. Finally, numerical 

simulations and practical results show the excellent tracking performance of the suggested adaptive control method. [20] 

Although electric vehicles use green power and have green environmental benefits, the popularity of gasoline engine vehicles is 

still not gaining. The latest Electric Vehicle models feature distinct modes of driving assistance but are quite expensive. This is an 

autonomous system algorithm that changes and cheap costs, making electric vehicles smart and adaptable to use. The author has 

studied a four-wheel drive system and a double-axle rotation in our concept automobile to assure a fast reversal and short spatial 

rotation. The four-wheel drive system and double axel rotation are employed in your idea automobile and ensures fast U-turn and 

short rotation. They have utilised sophisticated self-controlling systems including automotive driving (limited to short distances), 

car parking, multiple mode driving aids, such as hill track detection, adaptive cruise control. This technology also detects unwanted 

rotation of the axle and can stop the automobile if impediments are found in front of it [21]. 

Past studies suggest that we need to have a dynamic and heuristic approach for the control of autonomous vehicles. We have 

concentrated in developing a dynamic control system for autonomous vehicles using deep reinforced learning in electric vehicles. 

The study also concentrates on energy saving optimization. For heterogeneous network electric vehicles (EVs), energy saving 

measures is extensively used [22]. The independent and precise regulation of motor- and regenerative braking torque may be 

performed separately and correctly on wheel motors including the in-wheel motor mounted in the wheel hub and close-to-the-wheel 

motor. Electric vehicles (EVs) for wheel motor (WMD) have recently been quickly developing. However, only a few studies carried 

out a thorough assessment of control techniques and uses of WMD EVs for energy efficiency. 

 

III. Methods 

3.1 Reinforcement learning 

Reinforcement learning is an agent who interacts with the environment, learns an optimum policy for sequential decision-making 

issues, both in natural sciences and social sciences as well as in engineering, via testing and error [23]. In the last years, in 

strengthening training, in the field of gaming, robotics, natural language processing, etc., deep learning or deep neural networks has 

prevailed [24]. Profound learning as a specific class is not without limits, for example as a blackbox that does not have 

interpretability, as a "alchemy" which is not subject to clear and adequate science rules, and which cannot compete with a child on 

tasks without human intellect [25]. 
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Unsupervised learning tries, clustering and density estimation, to extract information from data without labels. The typical kind of 

unattended learning is representational learning. However, a kind of representational learning involves training feedback networks 

or convolutionary neural networks with supervised education[26]. Representation learning provides a way to maintain as much 

information as feasible about the original data, while keeping the display simpler and more accessible than the original data, in a 

low-dimensional sparing and autonomous way [27]. 

Deep neural networks automatically learn representations from raw inputs for recalling compositional hierarchies in various natural 

signals, i.e, lower level characteristics, e.g. pictures, objects hierarchy, components, motifs and local border combinations [28]. 

Distribution is a core notion in deep learning that means that every input may be represented by multiple features and that every 

feature may be numerous inputs. The deep, distributed representations' exponential benefits tackle exponential difficulties of the 

dimensions [29]. 

Mapping is one of the core driving pillars. Once an area is mapped it is possible to locate the present position of the car in the map. 

Google's initial reliable autonomous driving demos were based mainly on the location of pre-mapped places [30]. Due to the size 

of the challenge, the semantic object detection for accurate disambiguation increases standard mapping approaches. Also for object 

recognition, the localised high-development maps (HD maps) can be employed. An important aspect in the independent pipeline is 

trajectory planning. This module is needed to create motion-level instructions to guide the agent given a route-level plan using HD 

maps or GPS-based maps [31]. 

Classical motion planning ignores dynamics and differential restrictions while translating an agent into a target utilising translations 

and rotations [32]. A robotic agent which controls 6 degrees DOFs is considered holonomic, whereas an agent with less DOFs is 

known to be non-holonomic than its total DOFs. In the non-holonomical situation for autonomous drive classical algorithms, such 

as Djisktra algorithms, do not function. Random trees (RRT), which explores the configuration space quickly, are non-holonomic 

algorithms that explores the area with a random sample and free route and so we sue deep learning algorithm for motion control 

[33]. 

Motion planning is the task of ensuring the existence of a path between target and destination points. This is necessary to plan 

trajectories for vehicles over prior maps usually augmented with semantic information [34]. Path planning in dynamic environments 

and varying vehicle dynamics is a key problem in autonomous driving, for example negotiating right to pass through in an 

intersection merging into highways [35]. 

 
FIGURE 1INTERSECTION OF ROADS IN TRAFFIC 

The system was trained in simulation first, and then trained in real time on board computers, and was able to train in a lane to 

complete a 250 m road test successfully. For learning models and policies directly from raw pixel inputs, model-based deep RL 

algorithms have been suggested [36]. Deep neural networks were utilised to produce predictions across hundreds of steps in 

simulated settings. Also for control, RL is useful. In comparison to RL techniques, classical optimum control methods such as 

LQR/iLQR are conducted. For the optimum control of stochastic situations, classical RL techniques are utilised [37]. 

Self-driving is an essential multi-agency work because, along with an agent's ego vehicle, many other actors such as pedestrians, 

bikers and other cars will also be present in simulated and real-world autonomous driving scenarios [38]. Therefore it is an essential 

future area of study to continue to build explicitly multi-agent learning methods to drive autonomous cars. Several previous 

techniques of autonomous driving tackled the problem with a MARL (Multi-agent reinforcement learning) viewpoint. 

 

3.2 Optimization of powertrain operation 

The existing EVs in the market often use power management methods heuristic or ad hoc which may not be optimal in a true pilot 

scenario. These techniques conservatively utilise the electricity source to prevent battery depletion [39. The optimisation of the 

powertrain is done by determination of the optimal real-time power split ratio. If the future trajectory of the vehicle speed is 

anticipated a priority, optimum power management may be accomplished [40]. 

Without connection data, this is unfeasible in real-time. This information enables the optimum controller to properly forecast the 

future pathways of the vehicle and to intelligently choose the right power source [41]. For instance, the controller may choose to 

use more electric energy when it is approaching a crossroads when it knows that the traffic signal turns red and a halt is essential. 

This reduces the operation of the engine and hence the usage of less gasoline while the battery is refilled when the car slows to a 

stop by regenerative braking [42]. 

Co-optimization of both car and engine means that connectivity is necessary to predict future traffic reports and partial or complete 

automation in order to implement the optimum vehicle control rule [43]. A three-step framework sample includes: 

1. First, simulate the dynamics and dynamics of the longitudinal vehicle. The goal of optimization is to reduce the use of 

gasoline. The factors for control optimisation include the intended acceleration of the vehicle, motor throttle, gear shift 

and hybrid power use (if it exists). The information about the traffic (signal phase and time (SPaT)), the speed and 

acceleration of previous cars, the dynamic speed limit, etc.) are provided. 

2. Secondly, identify the problem of energy efficiency optimisation and establish restrictions according to the individual 

CVAs. In Eco-AD, for example, the vehicle should keep its track safe, keep to its speed limits, and only pass when the 

light is green. 

3. Third, create solutions to the aforementioned optimisation challenge that can be implemented in real time. The potential 

techniques include both the indirect method based on the calculus of variance and the minimal PMP (Particular Way) and 
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the direct method based on discretizing and resolving the problem by applying numerical optimization tools into a 

nonlinear programming (NLP) problem. [44] 

Energy optimization includes the battery management, gear shift, power control. Using deep reinforcement learning, we try and 

optimize the battery aging, gear shift and power control [45]. 

 

3.3 System Modelling 

We are trying to minimize the integral energy consumption value Eev for a time t, t0 ≤ t ≤ tdes for a minimum of battery 

usage mbaṫ , 

EEV =  ∫  MBAT
̇ (ACTION(T), T)DT

TDES

T0

         1 

Having the state of charge as boundary condition, where SOC(tdes) is the fully charged condition [46]. The power in the vehicle in 

influenced by the rolling friction and aerodynamic drag,  

PVEHICLE = F(VVEHICLE,ΔVEHICLE,PAEROVEHICLE)                    2 

The torque and speed of the vehicle is given as follows: 

TROLLING =
PVEHICLE. R

VVEHICLE

                                                                   3  

ΗVEHICLE =
VVEHICLE

2Π.R
                                                                           4  

Where, r is the radius of the wheel [47]. 

With the speed and torque at hand, if we calculate the fuel consumed, then 

( , , , )fuelcons vehicle vehicle emelm f T G P                5      

To calculate the total power PEV,  we need to know the losses [48-51]. The following is the formula used in calculating the 

mechanical losses and electrical losses, 

( , )

( , )

mechanical mechnical

electrical electrical

P f p

P f p








                               6 

battery is controlled as, 

 , 1   ,  , ,battery t battery battery Controlf t P Coolant   …..7 

Where the state vector is defines as, 

   , , , ,  t vehicle vehicle batterys n M SOC G           8 

Where G is the selected gear and SOC is defined as follows: 

 1    ,t t batterySOC f SOC P                       9 

The power consumed by the electric vehicle is therefore given as, 

max

min

, 0

, 0

t em t

em

t em t

a P fora
P

a P fora


 

                        10 

Rewards are calculated as follows, 

    t bat Eelectricalr E                     11 

Where  batE Ebat and Eelectrical  are calculated as follows, 

   ·  ·

   ·

battery battery battery battery

electrical bat

E m H

E P t



 
 12 

The following diagram is as follows 
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FIGURE 2 : SIGNAL FLOW DIAGRAM OF ELECTRIC VEHICLE 

 

The Q-learning algorithm is as follows [52-54]: 

initialize Q arbitrarily, e.g., to 0 for all states, set action value for terminal states as 0 

initialize the replay buffer 

for each episode do initialize state s for each step of episode, state s is not terminal do 

a ← action for s derived by Q, e.g., ɛ-greedy 

choose action at with actor and add noise 

execute at 

observe rt+1 and st+1 

store [st,at,rt+1,st+1] in buffer 

choose minibatch from buffer 

take action a, observe r, s’ 

Q(s, a) ← Q(s, a) + α[r + γ maxa0 Q(s, a0) − Q(s, a)]s ← s’ 

end 

end 

IV. Results and Discussions 

The results were simulated using open source software Scilab. The actor gets a standardised vector of the state and produces the 

stated continuous action. The critic also enters into the second network layer and produces a continuous Q-value through linear 

activation. A discount factor of γ = 0 was set for the training procedure. Therefore the agent optimised his approach exclusively for 

local rewards. However, given there is a dynamic weighting element based on the present charge status in the award function, the 

agent has adapted the technique quite far-sightedly. This means that considerably better outcomes than discounts γ = 0 were attained.  

 
 

FIGURE 3 AGENT-ENVIRONMENTINTERACTION FOR REINFORCEMENT LEARNING 

 

The engine speed was plot as such:  

The resulting energy consumption is reduced according to the bonus function consistently, while the fuel saved by the combustion 

engine alone, which has been set very early, is more than 20%. With the resulting battery charge near to the starting value of 50 

percent in the terminal state of an episode, SOC may be regarded as balanced. A positive variation of the cycle battery charge for 

any efficient operating strategy might easily be predicted in a low-speed situation where the low-powered electrical motor can be 

utilised extremely efficiently. 
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FIGURE 4 MOTOR SPEED VS TORQUE 

The learning rate of the actor network had to be adjusted occasionally to driving profiles including rather high speed and accelerated 

rates, since the unavoidable increases in reward by increased momentary fuel consumption lead to greater degrees in the beginning 

of training, where neuronal networks are initialised with close to nil outputs and the loss increases acceleration It would be a 

substantial alternative to reduce the incentives or the slopes to specified maximum values, but important information regarding the 

use of fuel can be eliminated later in the training. 

 
FIGURE 5 FUEL SAVING COMPARISION 

In comparison to DP, the RL agent does not need past driving information and is taught to optimally manage the EM using just 

instantaneous vehicle environmental input. The benefit of deep reinforcement education above any other traditional approach for 

deriving HEV operational strategies is a local strategy optimization with almost worldwide optimal answers. 

Stochastic cycles might also contain any kind of information on driving behaviours or traffic conditions that neural networks can 

simply consider in the operational plan. This gives a far more exact depiction of reality traffic which may result, rather than a 

generating approximate values on a test stand, in increasing fuel savings and reducing emissions in the actual operation of the 

vehicle. 

 
FIGURE 6 BATTERY LOADING TRAJECTORIES 

V. Conclusion 

In real-world autonomous driving applications, strengthening learning is still an active and growing subject. Some successful 

commercial applications are available, there is relatively little public literature or large-scale dataset. We were encouraged to define 

and arrange autonomous driving RL applications. Autonomous driving situations include interactive agents and need to be 

negotiated and to be dynamically decided according to RL. Many problems have to be overcome to provide mature, detailed 

answers. Theoretical enhancement learning and an extensive literature analysis on RL application for autonomous driving 

challenges are provided throughout this study. 

Developing explicitly multi-agent learning techniques to the problem of autonomous driving is also a significant and unheard of 

task for the future. MARL methods facilitate coordination and high-level decision making amongst autonomous vehicle groups and 

provide new chances for the safety of autonomous driving regulations to be tested and validated. In addition, RL algorithms are a 

difficult challenge for academics and practitioners. In conclusion, we believe this study will stimulate future research and 

applications. 
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