RP-173: Solving four standard cubic congruence modulo an even multiple of square of an odd prime

Prof. B M Roy
Head, Department of Mathematics
Jagat Arts, Commerce \& I H P Science College, Goregaon
Dist- Gondia, M. S., India, Pin: 441801.

Abstract

In the current paper, the author considered four standard cubic congruence of even composite modulus modulo an even multiple of square of an odd prime for his study. After a rigorous study, the author has established formulations for the solutions of the congruence under his consideration. It is seen that the four congruence have two different formulation of solutions. These formulations are examined solving numerical examples and tested \& verified true. No suitable literature of the solutions of the congruence considered is found in the literature of mathematics. The author first time formulated the solutions which are very simple and easy to remember.

Keywords: Cubic congruence, Cubic residues, Chinese Remainder Theorem (C R T).

INTRODUCTION

Standard cubic congruence of prime and composite modulus are not found studied in the schools and in the universities. Earlier mathematicians showed no interest in it. Studies had been done on quadratic congruence of prime modulus but not on of composite modulus. No
Complete study is found in the literature. The author has tried his best to study the standard cubic congruence of prime and composite modulus and formulated its solutions. Here is also the solutions of some standard cubic congruence of composite modulus are formulated.

PROBLEM-STATEMENT

The problem is
"To formulate the solutions of the standard cubic congruence of the type:
(1) $\mathrm{x}^{3} \equiv \mathrm{p}^{2}\left(\bmod 2 \mathrm{p}^{2}\right)$
(2) $x^{3} \equiv p^{2}\left(\bmod 4 p^{2}\right)$
(3) $\mathrm{x}^{3} \equiv \mathrm{p}^{2}\left(\bmod 6 \mathrm{p}^{2}\right)$
(4) $x^{3} \equiv p^{2}\left(\bmod 8 p^{2}\right) ; p$ an odd positive integer".

LITERATURE REVIEW

The standard cubic congruence considered here for study are of very special types.
Similar special types of cubic congruence are already published by the author [1], [2], [3]. Here some other special types are considered for formulation of solutions. The literature of mathematics say nothing about these cubic congruence [4], [5]. But the readers can use Chinese remainder theorem [6].

ANALYSIS \& RESULTS

Case-I: Consider the congruence $\mathrm{x}^{3} \equiv \mathrm{p}^{2}\left(\bmod 2 \mathrm{p}^{2}\right)$
Consider $x \equiv 2 p k+p\left(\bmod 2 p^{2}\right)$

$$
\equiv(2 k+1) p\left(\bmod 2 p^{2}\right)
$$

Then, $x^{3}-p^{2} \equiv[(2 \mathrm{k}+1) \mathrm{p}]^{3}-\mathrm{p}^{2}=(2 \mathrm{k}+1)^{3} \mathrm{p}^{3}-\mathrm{p}^{2}=\mathrm{p}^{2}$ [odd integer -1]

$$
\begin{aligned}
& \equiv p^{2} \cdot(\text { even integer }) \\
& \equiv p^{2} \cdot 2 t \\
& \equiv 0\left(\bmod 2 \mathrm{p}^{2}\right)
\end{aligned}
$$

So, $x^{3} \equiv p^{2}\left(\bmod 2 p^{2}\right)$
Thus, $x \equiv 2 p k+p\left(\bmod 2 p^{2}\right)$ may be considered as solutions of the congruence.
But for $k=p$, the solutions formula reduces to $x \equiv 2 p \cdot p+p\left(\bmod 2 p^{2}\right)$

$$
\begin{aligned}
& \equiv 2 p^{2}+p\left(\bmod 2 p^{2}\right) \\
& \equiv 0+p\left(\bmod 2 p^{2}\right)
\end{aligned}
$$

This is the same solution as for $k=o$.
Also, for $k=p+1$, the solutions formula reduces to $x \equiv 2 p .(p+1)+p\left(\bmod 2 p^{2}\right)$

$$
\begin{aligned}
& \equiv 2 p^{2}+2 p+p\left(\bmod 2 p^{2}\right) \\
& \equiv 0+2 p+p\left(\bmod 2 p^{2}\right) \\
& \equiv 2 p+p\left(\bmod 2 p^{2}\right)
\end{aligned}
$$

This is the same solution as for $k=1$.

Therefore, all the solutions are given by
$x \equiv 2 p k+p\left(\bmod 2 p^{2}\right) ; k=0,1,2,3, \ldots \ldots .,(p-1)$.
Case-II: Let $p \equiv 1(\bmod 4)$. Then, $p-1=4 t$.
Consider the cubic congruence $x^{3} \equiv p^{2}\left(\bmod 4 p^{2}\right)$.
Consider $x \equiv 4 p k+p\left(\bmod 4 p^{2}\right)$

$$
\equiv(4 k+1) p\left(\bmod 4 p^{2}\right)
$$

Then, $x^{3}-p^{2} \equiv[(4 \mathrm{k}+1) \mathrm{p}]^{3}-\mathrm{p}^{2}=(4 \mathrm{k}+1)^{3} \mathrm{p}^{3}-\mathrm{p}^{2}=\mathrm{p}^{2}$ [odd integer -1]

$$
\begin{aligned}
& \equiv p^{2} \cdot(\text { even integer }) \\
& \equiv p^{2} .4 t \\
& \equiv 0\left(\bmod 4 \mathrm{p}^{2}\right)
\end{aligned}
$$

So, $x^{3} \equiv p^{2}\left(\bmod 4 p^{2}\right)$
Thus, $x \equiv 4 p k+p\left(\bmod 4 p^{2}\right)$ may be considered as solutions of the congruence.
But for $k=p$, the solutions formula reduces to $x \equiv 4 p \cdot p+p\left(\bmod 4 p^{2}\right)$

$$
\begin{aligned}
& \equiv 4 p^{2}+p\left(\bmod 4 p^{2}\right) \\
& \equiv 0+p\left(\bmod 4 p^{2}\right)
\end{aligned}
$$

This is the same solution as for $k=o$.
Also, for $k=p+1$, the solutions formula reduces to $x \equiv 4 p \cdot(p+1)+p\left(\bmod 4 p^{2}\right)$

$$
\begin{aligned}
& \equiv 4 p^{2}+4 p+p\left(\bmod 4 p^{2}\right) \\
& \equiv 0+4 p+p\left(\bmod 4 p^{2}\right) \\
& \equiv 4 p+p\left(\bmod 4 p^{2}\right)
\end{aligned}
$$

This is the same solution as for $k=1$.
Therefore, all the solutions are given by
$x \equiv 4 p k+p\left(\bmod 4 p^{2}\right) ; k=0,1,2,3, \ldots \ldots,(p-1)$.
Case-III: Consider the cubic congruence $x^{3} \equiv p^{2}\left(\bmod 6 p^{2}\right)$.
Consider $x \equiv 6 p k+p\left(\bmod 6 p^{2}\right)$

$$
\equiv(6 k+1) p\left(\bmod 6 p^{2}\right)
$$

Then, $x^{3}-p^{2} \equiv[(6 \mathrm{k}+1) \mathrm{p}]^{3}-\mathrm{p}^{2}=(6 \mathrm{k}+1)^{3} \mathrm{p}^{3}-\mathrm{p}^{2}=\mathrm{p}^{2}$ [odd integer -1$]$

$$
\begin{aligned}
& \equiv p^{2} \cdot(\text { even integer }) \\
& \equiv p^{2} \cdot 6 t \\
& \equiv 0\left(\bmod 6 \mathrm{p}^{2}\right)
\end{aligned}
$$

So, $x^{3} \equiv p^{2}\left(\bmod 6 p^{2}\right)$
Thus, $x \equiv 6 p k+p\left(\bmod 6 p^{2}\right)$ may be considered as solutions of the congruence.
But for $k=p$, the solutions formula reduces to $x \equiv 6 p \cdot p+p\left(\bmod 6 p^{2}\right)$

$$
\begin{aligned}
& \equiv 6 p^{2}+p\left(\bmod 6 p^{2}\right) \\
& \equiv 0+p\left(\bmod 6 p^{2}\right)
\end{aligned}
$$

This is the same solution as for $k=o$.
Also, for $k=p+1$, the solutions formula reduces to $x \equiv 6 p \cdot(p+1)+p\left(\bmod 6 p^{2}\right)$

$$
\begin{aligned}
& \equiv 6 p^{2}+6 p+p\left(\bmod 6 p^{2}\right) \\
& \equiv 0+6 p+p\left(\bmod 6 p^{2}\right) \\
& \equiv 6 p+p\left(\bmod 6 p^{2}\right)
\end{aligned}
$$

This is the same solution as for $k=1$.
Therefore, all the solutions are given by
$x \equiv 6 p k+p\left(\bmod 6 p^{2}\right) ; k=0,1,2,3, \ldots \ldots,(p-1)$.
Case-IV: Consider the cubic congruence $x^{3} \equiv p^{2}\left(\bmod 8 p^{2}\right)$.
Consider $x \equiv 4 p k+p\left(\bmod 8 p^{2}\right)$

$$
\equiv(4 k+1) p\left(\bmod 8 p^{2}\right)
$$

Then, $x^{3}-p^{2} \equiv[(4 \mathrm{k}+1) \mathrm{p}]^{3}-\mathrm{p}^{2}=(4 \mathrm{k}+1)^{3} \mathrm{p}^{3}-\mathrm{p}^{2}=\mathrm{p}^{2}$ [odd integer -1$]$

$$
\begin{aligned}
& \equiv p^{2} \cdot(\text { even integer }) \\
& \equiv p^{2} \cdot 8 t \\
& \equiv 0\left(\bmod 8 \mathrm{p}^{2}\right)
\end{aligned}
$$

So, $x^{3} \equiv p^{2}\left(\bmod 8 p^{2}\right)$
Thus, $x \equiv 4 p k+p\left(\bmod 8 p^{2}\right)$ may be considered as solutions of the congruence.
But for $k=2 p$, the solutions formula reduces to $x \equiv 4 p .2 p+p\left(\bmod 8 p^{2}\right)$

$$
\begin{aligned}
& \equiv 8 p^{2}+p\left(\bmod 8 p^{2}\right) \\
& \equiv 0+p\left(\bmod 8 p^{2}\right)
\end{aligned}
$$

This is the same solution as for $k=o$.
Also, for $k=2 p+1$, the solutions formula reduces to $x \equiv 4 p \cdot(2 p+1)+p\left(\bmod 8 p^{2}\right)$

$$
\begin{aligned}
& \equiv 8 p^{2}+4 p+p\left(\bmod 8 p^{2}\right) \\
& \equiv 0+4 p+p\left(\bmod 8 p^{2}\right)
\end{aligned}
$$

$$
\equiv 4 p+p\left(\bmod 8 p^{2}\right)
$$

This is the same solution as for $k=1$.
Therefore, all the solutions are given by
$x \equiv 4 p k+p\left(\bmod 8 p^{2}\right) ; k=0,1,2,3, \ldots \ldots,(2 p-1)$.

ILLUSTRATIONS

Ex-1: consider $x^{3} \equiv 25(\bmod 50)$
$x \equiv 2 p k+p\left(\bmod 2 p^{2}\right) ; k=0,1,2,3, \ldots \ldots,(p-1)$.
$\equiv 2.5 k+5(\bmod 2.25)$
$\equiv 10 k+5(\bmod 50) ; k=0,1,2,3,4$
$\equiv 5,15,25,35,45(\bmod 50)$
Ex-2: consider $x^{3} \equiv 25(\bmod 100)$
$x \equiv 4 p k+p\left(\bmod 4 p^{2}\right) ; k=0,1,2,3, \ldots \ldots,(p-1)$. $\equiv 4.5 k+5(\bmod 4.25)$
$\equiv 20 k+5(\bmod 100) ; k=0,1,2,3,4$.
$\equiv 5,25,45,65,85(\bmod 100)$
Ex-3: consider $x^{3} \equiv 49(\bmod 98)$
It can be written as $x^{2} \equiv 7^{2}\left(\bmod 2.7^{2}\right)$
It is of the type $x^{2} \equiv p^{2}\left(\bmod 2 . p^{2}\right)$
Therefore, it has exactly $p=7$ incongruent solutions given by
$x \equiv 2 p k+p\left(\bmod 2 p^{2}\right) ; k=0,1,2,3, \ldots \ldots,(p-1)$.
$\equiv 2.7 k+7\left(\bmod 2.7^{2}\right)$
$\equiv 14 k+7(\bmod 98) ; k=0,1,2,3,4,5,6$.
$\equiv 7,21,35,49,63,77,91(\bmod 98)$
Ex-4: consider $x^{3} \equiv 49(\bmod 196)$
It can be written as $x^{2} \equiv 7^{2}\left(\bmod 4.7^{2}\right)$
It is of the type $x^{2} \equiv p^{2}\left(\bmod 4 . p^{2}\right)$
Therefore, it has exactly $p=7$ incongruent solutions given by
$x \equiv 2 p k+p\left(\bmod 4 p^{2}\right) ; k=0,1,2,3, \ldots \ldots,(2 p-1)$.
$\equiv 2.7 k+7\left(\bmod 4.7^{2}\right)$
$\equiv 14 k+7(\bmod 196) ; k=0,1,2,3,4, \ldots \ldots \ldots .,(2.7-1)$.
$\equiv 7,21,35,49,63,77,91,105,119,133,147,161,175,189(\bmod 196)$
Ex-5: consider $x^{3} \equiv 49(\bmod 294)$
It can be written as $x^{2} \equiv 7^{2}\left(\bmod 6.7^{2}\right)$
It is of the type $x^{2} \equiv p^{2}\left(\bmod 6 . p^{2}\right)$
Therefore, it has exactly p incongruent solutions given by
$x \equiv 6 p k+p\left(\bmod 6 p^{2}\right) ; k=0,1,2,3, \ldots \ldots,(p-1)$.
$\equiv 6.7 k+7\left(\bmod 6.7^{2}\right)$
$\equiv 42 k+7(\bmod 294) ; k=0,1,2,3,4,5,6$.
$\equiv 7,49,91,133,175,217,259(\bmod 294)$
Ex-6: consider $x^{3} \equiv 25(\bmod 200)$
It can be written as $x^{2} \equiv 5^{2}\left(\bmod 8.5^{2}\right)$
It is of the type $x^{2} \equiv p^{2}\left(\bmod 8 . p^{2}\right)$
Therefore, it has exactly 2 p incongruent solutions given by
$x \equiv 4 p k+p\left(\bmod 8 p^{2}\right) ; k=0,1,2,3, \ldots \ldots,(2 p-1)$.
$\equiv 4.5 k+5\left(\bmod 8.5^{2}\right)$
$\equiv 20 k+5(\bmod 200) ; k=0,1,2,3,4,5,6,7,8,9$.
$\equiv 5,25,45,65,85,105,125,145,165,185(\bmod 200)$

CONCLUSION

Therefore, it is concluded that the standard cubic congruence: $x^{3} \equiv p^{2}\left(\bmod 2 p^{2}\right)$ has exactly p incongruent solutions $x \equiv 2 p k+p\left(\bmod 2 p^{2}\right), p$ an odd prime $; k=0,1,2, \ldots,(p-1)$.
Similarly, the standard cubic congruence: $x^{3} \equiv p^{2}\left(\bmod 6 p^{2}\right)$ has exactly p incongruent solutions $x \equiv 6 p k+$ $p\left(\bmod 6 p^{2}\right), p$ an odd prime $; k=0,1,2, \ldots \ldots .,(p-1)$.
Also, the standard cubic congruence: $\quad x^{3} \equiv p^{2}\left(\bmod 4 p^{2}\right)$ has exactly $2 p$ incongruent solutions $x \equiv 2 p k+$ $p\left(\bmod 4 p^{2}\right), p$ an odd prime $; k=0,1,2,3, \ldots \ldots,(2 p-1)$.

Also, the standard cubic congruence: $\quad x^{3} \equiv p^{2}\left(\bmod 8 p^{2}\right)$ has exactly $\quad p$ incongruent solutions $x \equiv 4 p k+$ $p\left(\bmod 8 p^{2}\right), p$ an odd prime $; k=0,1,2,3, \ldots \ldots \ldots,(2 p-1)$.

REFERENCES

[1] Roy B M, Formulation of solutions of three very special standard cubic congruence of composite modulus, International Journal for research Trends and Innovations (IJRTI), ISSN: 2456-3315, Vol-05, Issue-02, Feb-20.
[2] Roy B M, A review and reformulation of solutions of standard cubic congruence of
Composite modulus modulo an odd prime power integer, International journal for scientific Development and research (IJSDR), ISSN: 2455-2631, Vol-05, Issue-12, Dec-20.
[3] Roy B M, Solving some special standard cubic congruence modulo an odd prime multiplied by eight, International Journal of Scientific Research and Engineering Development International Journal for research Trends and Innovations (IJSRED), ISSN: 2581-7175, Vol-04, Issue-01, Jan-21.
[4] Zukerman[1] Zuckerman H. S., Niven I., 2008, An Introduction to the Theory of Numbers, Wiley India, Fifth Indian edition, ISBN: 978-81-265-1811-1.
[5] Thomas Koshy, 2009, Elementary Number Theory with Applications, Academic Press, Second Edition, Indian print, New Dehli, India, ISBN: 978-81-312-1859-4.
[6] David M Burton, 2012, Elementary Number Theory, Mc Graw Hill education (Higher Education), Seventh Indian Edition, New Dehli, India, ISBN: 978-1-25-902576-1.

