Optimum and Non-Optimum 16-Pulse Scott Composition Founded AC-DC Converters

1Bhawana Singh, 2Achal Kumar, 3Dharmendra Kumar Sharma
Dept. of Electrical and Electronics Engg.
IIMT Group of college, Greater Noida, India

Abstract: This paper deals with a multi-pulse AC-DC converter that generate DC output voltage having 16 pulsations, fed from orthogonally connected transformers. The orthogonal supply voltages are obtained from the special transformer connection called Scott connection. In this paper the two configurations, canonical and non-canonical arrangements, which are suitable for 16-pulse generation are modelled and analysed. The output voltage ripples are small and at the same time the input current total harmonic distortion (THD) is improved compared to the conventional 6-pulse and 12-pulse AC-DC converters.

Keywords: Scott transformer; Multi-pulse AC-DC converter; THD; Canonical; Orthogonal supply voltage

I. INTRODUCTION

Multi-pulse AC-DC converters are described by number of researchers to improve power quality at its input, simultaneously reducing the output voltage ripples [1] by increasing the converter pulse number. In Scott connections, two transformers are employed to produce orthogonal AC supply voltages when three-phase to two-phase transformation (or vice-versa) is required. The 2-phase orthogonal AC voltages can be rectified to have certain advantages. The pulse number of such rectifiers is 4, 8, 12, 16, etc. During the rectification of orthogonal voltages, different number of windings is needed, corresponding to the number of pulsations required at output. Each winding must have mathematically well-founded turn numbers to increase the frequency multiplicity of pulsations of rectified voltage [2-5].

If the rectified voltage wave has identical pulsations with their corresponding extreme values located at the same level and the shearing angles between adjacent phasors of rectified voltage in a phase plane are equal then the wave shape of such a rectified voltage is called as canonical. However if the pulses have different durations with insignificant amplitudes, the extreme values have different levels and the shearing angles between adjacent phasors of rectified voltage are different, then the wave shape of such a rectified voltage is called as non-canonical [4].

The main advantage of orthogonal rectifiers with a non-canonical shape of pulsations is that the secondary windings are realized with only two values of turn numbers for any pulsenumber. Moreover, the number of secondary windings of each transformer is decreased by one compared to the transformer of the corresponding rectifier with a canonical formation.

The orthogonal power supply is produced with the help of two transformers—main transformer and teaser transformer. Usually, two secondary windings in each transformer are required for 8-pulse rectifiers, three for 12-pulse rectifiers, four for 16-pulse rectifiers, five for 20-pulse rectifiers, etc [3].

II. TRANSFORMER ARRANGEMENT BASED ON SCOTT CONNECTION

When it comes to three phase equipment to be used with one of the three phases failed then it is urgently required to a system that it can convert the available one and/or two phase supply into equivalent & nearly balanced three phase supply. It can be achieved with a transformer which is based on Scott connection, generally called as “Scott transformer” [6]. There are two individual single phase transformers, connected in such a fashion that the output will be balanced there phase supply of equal voltage & phase difference are shown in Fig.1. It is Reverse Scott connection. Reverse Scott connection means two phase to three phase conversion. It can be used in 3-phase to 3-phase or 3-phase to 2-phase conversion or vice-versa.

Fig.1. Transformers based on Scott connection scheme
A. Generation of orthogonal supply voltage

For the analysis and synthesis of rectifier schemes fed with orthogonal power supply, the method of phasor diagrams can be utilized. This method is completely applicable to the different rectifier configurations with different pulse numbers. Moreover, any of the known schemes of rectifiers may be analyzed with the help of this method.

The angular shift between the neighbouring vectors of voltages for a rectifier system can be given as \(\frac{2\pi}{n} \) where \(n \) is the number of pulsations in the rectified voltage in one cycle of supply voltage. Hence, phase shift of 22.5° between the voltage phasors is required for obtaining a 16-pulse rectifier, as shown by in Fig.2.

B. A 16-Pulse Non-optimum AC-DC converter

On the basis of Scott connection, a 16-pulse non-optimum AC-DC converter produces the canonical output pulses. Fig.3 shows the schematic diagram for 16-pulse non-optimum rectifier.

Fig.4 shows the winding connection diagram for 16-pulse non-optimum rectifier.

C. A 16-Pulse optimum AC-DC converter

Another configuration for the Scott connected 16-pulse rectifier is represented in Fig.5. It is called as 16-pulse Optimum AC-DC converter as the number of secondary windings has reduced in this configuration.

Fig.6 gives the winding connection diagram for the Optimum 16-pulse AC-DC converter.
It is clear from figures that the Optimum converter requires less number of windings as compared to the non-optimum converter, for the same number of pulsations at output. Hence, the total magnetics used for the converter is reduced and this results in reduced cost and size of the converter system.

III. MATLAB SIMULATION

The simulation is carried out in MATLAB environment employing SIMULINK and Power System Blocksets (PSB). The simulation supply voltage of 415V is feeding a 20 kW load. The MATLAB/SIMULINK models for non-optimum and optimum 16-pulse converters are described in this section for investigation.

A. MATLAB models for Non-optimum converter

Fig.7 shows the MATLAB model of proposed 16-pulse non-optimum AC-DC converter.

Fig.7. MATLAB model for Non-optimum 16-pulse AC-DC converter

Fig.8. MATLAB model of orthogonally connected transformers used in non-optimum 16-pulse AC-DC converter

Fig.8 shows the MATLAB model of Scott connection based transformer arrangement used in this converter. Results and waveforms obtained from the simulation of this converter are given in next section.

B. MATLAB models for Optimum converter

In the Fig.9 the MATLAB model for the 16-pulse Optimum converter is shown and Fig.10 shows the MATLAB model for the transformer arrangement used in this converter.

Fig.9. MATLAB model for Optimum 16-pulse AC-DC converter

Fig.10. MATLAB model of transformer used in Optimum 16-pulse AC-DC converter

IV. RESULTS AND DISCUSSIONS

Figs. 11-16 show the various waveforms and harmonic spectrums for various quantities. Fig.11 shows the waveform for the input supply current waveform, its harmonic spectrum and THD at full load for the Non-optimum 16-pulse AC-DC converter.
converter based on Scott connection. The value of THDi can be seen as 5.6%. The characteristics harmonics can be seen to have values as 16n±1.

Fig.12 shows the waveforms for input and output voltages and currents at full load for 16-pulse Non-optimum AC-DC converter.

Fig.12. Input and output waveforms of Non-optimum16-pulse AC-DC converter at full load

Fig.13. Input current waveform and their THD spectrum for Optimum16-pulse AC-DC converter at full load

Fig.13 shows the waveform for the input supply current waveform, its harmonic spectrum and THD at full load for the optimum 16-pulse AC-DC converter at full load. The value of THDi is observed to be slightly higher at 5.81%. Fig.14 depicts the three phase currents at the input, the output current and voltage waveforms.

The variation of THDi and power factor with varying loads in two cases can be seen in Fig. 15 and 16, respectively. It can be seen that the value of THDi and power factor variation is nearly same in two cases. The insignificant advantage of canonical (non-optimum) topology is present over the non-canonical topology(optimum) at the cost of additional windings in two transformers. The value of THD in output voltage in optimum configuration is found to be better. The variation of various quantities like input and output current, voltages, power, THD, etc. with varying load can be seen in Table I.

Fig.14. Input and output waveforms of Optimum16-pulse AC-DC converter at full load

Fig.15. Variation of THD of supply current at different values of load for two16-pulse topologies.
Table I
COMPARISON OF POWER QUALITY PARAMETERS OF SCOTT CONNECTED NON-OPTIMUM AND OPTIMUM 16-PULSE
AC-DC CONVERTER AT DIFFERENT VALUES OF LOAD

<table>
<thead>
<tr>
<th>Topology</th>
<th>Load (%)</th>
<th>AC mains current I_m (A)</th>
<th>THD of I_m (%)</th>
<th>Distortion Factor</th>
<th>Displacement Factor</th>
<th>Power Factor</th>
<th>DC voltage (V_d)</th>
<th>Load current I_k (A)</th>
<th>Load power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-optimum 16-pulse</td>
<td>20%</td>
<td>6.427</td>
<td>7.714</td>
<td>.994</td>
<td>.994</td>
<td>.9965</td>
<td>585.8</td>
<td>6.892</td>
<td>4.037</td>
</tr>
<tr>
<td></td>
<td>40%</td>
<td>12.01</td>
<td>7.199</td>
<td>.997</td>
<td>.997</td>
<td>.9954</td>
<td>581.9</td>
<td>13.69</td>
<td>7.967</td>
</tr>
<tr>
<td></td>
<td>60%</td>
<td>18.19</td>
<td>6.563</td>
<td>.9966</td>
<td>.9945</td>
<td>.9945</td>
<td>577.6</td>
<td>21.23</td>
<td>12.26</td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>22.94</td>
<td>6.098</td>
<td>.9958</td>
<td>.9939</td>
<td>.994</td>
<td>574.4</td>
<td>27.03</td>
<td>15.53</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>28.27</td>
<td>5.610</td>
<td>.9950</td>
<td>.9935</td>
<td>.9934</td>
<td>570.7</td>
<td>33.57</td>
<td>19.16</td>
</tr>
<tr>
<td>Optimum 16-pulse</td>
<td>20%</td>
<td>5.802</td>
<td>8.869</td>
<td>.9977</td>
<td>.9938</td>
<td>.9870</td>
<td>580.7</td>
<td>6.909</td>
<td>4.056</td>
</tr>
<tr>
<td></td>
<td>40%</td>
<td>11.43</td>
<td>7.837</td>
<td>.9964</td>
<td>.9934</td>
<td>.9831</td>
<td>583.1</td>
<td>13.72</td>
<td>8.001</td>
</tr>
<tr>
<td></td>
<td>60%</td>
<td>17.65</td>
<td>6.932</td>
<td>.9953</td>
<td>.9929</td>
<td>.9787</td>
<td>578.7</td>
<td>21.29</td>
<td>12.32</td>
</tr>
<tr>
<td></td>
<td>80%</td>
<td>22.42</td>
<td>6.393</td>
<td>.9945</td>
<td>.9925</td>
<td>.954</td>
<td>575.4</td>
<td>27.10</td>
<td>15.59</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>27.84</td>
<td>5.810</td>
<td>.9939</td>
<td>.9922</td>
<td>.9716</td>
<td>571.6</td>
<td>33.70</td>
<td>19.26</td>
</tr>
</tbody>
</table>

Fig.16. Variation of Power Factor at different loads for the two topologies.

V. CONCLUSION

It has been observed that both the proposed converter configurations are capable to provide satisfactory performance. But from the simulation result given in Table-I it is concluded that optimum/ non-optimum 16-pulse AC-DC converters are found capable to minimize THD in input current by improving supply AC current as well as DC output voltage for a wide range of varying load. The power factor is better in the Non-optimum 16-pulse converter especially at lower loads which are shown in the Fig.14 by a graph between load and power factor.

It is clear from the winding connection diagrams that the Optimum converter requires less number of windings compared to the Non-optimum configuration. The total magnetics required for its construction is comparatively less. The results show its compactness and cost effectiveness as compared to non-optimum converter.

REFERENCES