RP-152: A review and reformulation of solutions of standard cubic congruence of composite modulus modulo an odd prime power integer

Prof. B M Roy
Head, Department of Mathematics
Jagat Arts, commerce \& I H P Science College, Goregaon Dist-Gondia, M. S., India.

Abstract

In this paper, a very special standard cubic congruence of composite prime power modulus is studied and after a rigorous study, the author has formulated the solutions of the congruence successfully and the consequence is presented in this paper. It is found that this special cubic congruence has exactly p^{2} incongruent solutions, where p is an odd prime positive integer. Due to this formulation of the solutions, it is now possible to find such a large numbers of solutions of a cubic congruence. So, it can be said that formulation is the merit of the paper.

Keywords: Cubic Congruence, Composite Modulus, Cubic Residue, Formulation, Incongruent solutions.

INTRODUCTION

If p is an odd positive prime integer, then the congruence $x^{3} \equiv a(\bmod p)$ is called a standard cubic congruence of prime modulus. If m is a composite positive integer, then $x^{3} \equiv a(\bmod m)$ is called a standard cubic congruence of composite modulus. Also, if a is cubic residue of the modulus, then the congruence is solvable. If the congruence is solvable. Then a can be written as $r^{3} \equiv a(\bmod p), r$ being a residue of p.
In this case the solvable Congruence can be written as: $x^{3} \equiv r^{3}(\bmod p)$.
In this paper the author considered the congruence: $x^{3} \equiv p^{3}\left(\bmod p^{n}\right)$ for formulation of its solutions. It was already published in IJSDR-May-19.

PROBLEM-STATEMENT

Here the problem is-"To formulate the special standard cubic congruence of the type:

$$
x^{3} \equiv p^{3}\left(\bmod p^{n}\right), p \text { being an odd prime, } n \text { positive integer". }
$$

LITERATURE REVIEW

In the literature of mathematics, nothing is found about the solving standard cubic congruence of prime and composite modulus. Only a definition is seen in the book of Zuckerman, page-no. 136, problem no. 18 [1] and Thomas Koshy had defined only a cubic residue, page-548 [2]. David M Burton [3] in his book: "Elementary Number Theory", in the page no. 166, used the Theory of Indices to solve standard cubic congruence of prime modulus but established no formula for solutions. No pre-formulation is found for the congruence considered here. Only the author's formulations on standard cubic congruence of composite modulus are found in the literature of mathematics [4], [5], [6], [7]. Here is one more standard cubic congruence of composite modulus the author considered for formulation of its solutions.

ANALYSIS \& RESULT

Consider the congruence under consideration: $x^{3} \equiv p^{3}\left(\bmod p^{n}\right), p$ being an odd prime.
Let us consider that $1 \leq n \leq 2$.
Then for $n=1$, the said congruence reduces to: $x^{3} \equiv p^{3}(\bmod p)$ which is equivalent to:
$x^{3} \equiv 0(\bmod p)$. It is found that the congruence has a single solution $x \equiv p(\bmod p)$
i.e. equivalently, $x \equiv 0(\bmod p)$.

Then for $n=2$, the said congruence reduces to: $x^{3} \equiv p^{3}\left(\bmod p^{2}\right)$ which is equivalent to:
$x^{3} \equiv 0\left(\bmod p^{2}\right)$.
It is also found after a rigorous study that $x \equiv p k+p, k=0,1,2, \ldots \ldots(p-1)$, gives the p -solutions of the congruence. The truth of the formula is verified by illustrations.
Consider now that $n \geq 3$.
For solutions, consider $x \equiv p^{n-2} k+p\left(\bmod p^{n}\right)$.
Then, $x^{3} \equiv\left(p^{n-2} k+p\right)^{3}\left(\bmod p^{n}\right)$

$$
\begin{aligned}
& \equiv\left(p^{n-2} k\right)^{3}+3 \cdot\left(p^{n-2} k\right)^{2} \cdot p+3 \cdot p^{n-2} k \cdot p^{2}+p^{3}\left(\bmod p^{n}\right) \\
& \equiv p^{3 n-6} k^{3}+3 p^{2 n-3} k^{2}+3 p^{n} k+p^{3}\left(\bmod p^{n}\right) \\
& \equiv p^{n} k\left(p^{2 n-6} k^{2}+3 p^{n-3} k+3\right)+p^{3}\left(\bmod p^{n}\right) ; n \geq 3 . \\
& \equiv p^{3}\left(\bmod p^{n}\right)
\end{aligned}
$$

Thus it is seen that $x \equiv p^{n-2} k+p\left(\bmod p^{n}\right)$ satisfies the cubic congruence and hence must give all the solutions.
But it is seen that for $k=p^{2}$, the solution formula reduces to:

$$
\begin{aligned}
x & \equiv p^{n-2} \cdot p^{2}+p\left(\bmod p^{n}\right) \\
& \equiv p^{n}+p\left(\bmod p^{n}\right) \\
& \equiv p\left(\bmod p^{n}\right)
\end{aligned}
$$

This is the same solution as for $k=0$.
Also if $k=p^{2}+1$, then the solution formula reduces to:

$$
\begin{aligned}
x & \equiv p^{n-2} \cdot\left(p^{2}+1\right)+p\left(\bmod p^{n}\right) \\
& \equiv p^{n}+p^{n-2}+p\left(\bmod p^{n}\right) \\
& \equiv p^{n-2}+p\left(\bmod p^{n}\right)
\end{aligned}
$$

This is the same solution as for $k=1$.
Therefore, all the solutions are given by:

$$
x \equiv p^{n-2} k+p\left(\bmod p^{n}\right) ; k=0,1,2, \ldots \ldots .,\left(p^{2}-1\right) .
$$

This gives p^{2} incongruent solutions of the congruence.
Therefore, the result of this discussion is that the standard cubic congruence of composite modulus: $x^{3} \equiv p^{3}\left(\bmod p^{n}\right)$ has p^{2} incongruent solutions given by:

$$
x \equiv p^{n-2} k+p\left(\bmod p^{n}\right) ; k=0,1,2, \ldots \ldots .,\left(p^{2}-1\right)
$$

ILLUSTRATIONS

Example-1: Consider the congruence $x^{3} \equiv 0(\bmod 5)$.
It is of the type: $x^{3} \equiv 0\left(\bmod p^{n}\right)$, with $n=1$.
It has a unique solution given by $x \equiv p\left(\bmod p^{n}\right)$

$$
\begin{aligned}
& \equiv 5\left(\bmod 5^{1}\right) \\
& \equiv 5(\bmod 5) .
\end{aligned}
$$

Example-2: Consider the congruence $x^{3} \equiv 0(\bmod 25)$.
It can be written as: $x^{3} \equiv 0\left(\bmod 5^{2}\right)$.
It is of the type: $x^{3} \equiv 0\left(\bmod p^{n}\right), n=2$.
It has $p=5$ incongruent solutions given by $x \equiv p k+p\left(\bmod p^{n}\right) ; \mathrm{k}=0,1,2,3,4$.

$$
\begin{aligned}
& \equiv 5 k+5\left(\bmod 5^{2}\right) \\
& \equiv 5,10,15,20,25(\bmod 25) .
\end{aligned}
$$

These are the $p=5$ solutions of the congruence.
Example-3: Consider the congruence $x^{3} \equiv 0(\bmod 125)$.
It can be written as: $x^{3} \equiv 0\left(\bmod 5^{3}\right)$ with $n=3$.
It is of the type: $x^{3} \equiv 0\left(\bmod p^{n}\right), n=3$.
It has $p^{2}=5^{2}=25$ solutions given by:
$\begin{aligned} x & \equiv p^{n-2} k+p\left(\bmod p^{n}\right) ; k=0,1,2,3, \ldots \ldots \ldots .\left(p^{2}-1\right) . \\ & \equiv 5 k+5\left(\bmod 5^{3}\right) ; k=, 1,2,3, \ldots \ldots \ldots, 24 . \\ & \equiv 5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,90,\end{aligned}$
$\equiv 5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,90$, $100,105,110,115,120,125(\bmod 125)$.
These are the 25 solutions of the congruence.
Example-4: Consider the Consider the congruence $x^{3} \equiv 125(\bmod 625)$.
It can be written as: $x^{3} \equiv 5^{3}\left(\bmod 5^{4}\right)$ with $p=5, n=4$.
It is of the type: $x^{3} \equiv p^{3}\left(\bmod p^{n}\right), p \geq 3$.
The solutions are given by

```
\(x \equiv p^{n-2} k+p\left(\bmod p^{n}\right) ; k=0,1,2, \ldots \ldots \ldots,\left(p^{2}-1\right)\).
    \(\equiv 5^{4-2} k+5\left(\bmod 5^{4}\right) ; k=0,1,2, \ldots \ldots \ldots . .\left(5^{2}-1\right)\)
    \(\equiv 5^{2} k+5\left(\bmod 5^{4}\right) ; k=0,1,2, \ldots \ldots \ldots \ldots \ldots,(25-1)\)
    \(\equiv 25 k+5(\bmod 625) ; k=0,1,2, \ldots \ldots \ldots, 24\).
    \(\equiv 5,30,55,80,105,130,155,180,205,230,255,280,305,330,355,380\),
    \(405,430,455,480,505,530,555,580,605(\bmod 625)\).
```

These are the $p=25$ solutions of the congruence.
Consider the Consider the congruence $x^{3} \equiv 343(\bmod 2401)$.
It can be written as: $x^{3} \equiv 7^{3}\left(\bmod 7^{4}\right)$ with $p=7, n=4$.
It is of the type: $x^{3} \equiv p^{3}\left(\bmod p^{n}\right), p \geq 3$.
The solutions are given by

$$
\begin{aligned}
x & \equiv p^{n-2} k+p\left(\bmod p^{n}\right) ; k=0,1,2, \ldots \ldots \ldots,\left(p^{2}-1\right) \\
& \equiv 7^{4-2} k+7\left(\bmod 7^{4}\right) ; k=0,1,2, \ldots \ldots \ldots,\left(7^{2}-1\right) \\
& \equiv 7^{2} k+7\left(\bmod 7^{4}\right) ; k=0,1,2, \ldots \ldots \ldots \ldots,(49-1) \\
& \equiv 49 k+7(\bmod 2401) ; k=0,1,2, \ldots \ldots \ldots, 48 . \\
& \equiv 7,56,105,154,203,252, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots, 2359(\bmod 2401) .
\end{aligned}
$$

These are the $p=49$ solutions of the congruence.

CONCLUSION

Therefore, it is concluded that the standard cubic congruence of composite modulus: $x^{3} \equiv p^{3}\left(\bmod p^{n}\right), p \geq 3$, has exactly $p^{2}-$ incongruent solutions, given by
$x \equiv p^{n-2} k+p\left(\bmod p^{n}\right) ; k=0,1,2, \ldots \ldots \ldots,\left(p^{2}-1\right), p$ being an odd prime positive integer.
But for $n=1$, the congruence has a unique solution $x \equiv p(\bmod p)$; also for $\mathrm{n}=2$, the congruence has exactly p incongruent solutions $x \equiv p k+p ; k=0,1,2, \ldots \ldots .,(p-1)$.

MERIT OF THE PAPER

The author's formulation of solutions of the cubic congruence under consideration made the finding of solutions easy and timesaving. A large number of solutions can be obtained in a short time with an easy efforts. Thus formulation of solutions is the merit of the paper.

REFERENCES

[1]I. Niven, H. S. Zuckerman, 2008, An Introduction to the Theory of Numbers, Wiley India, Fifth Indian edition, ISBN: 978-81-265-1811-1.
[2]Thomas Koshy, 2009, Elementary Number Theory with Applications, Academic Press, Second Edition, Indian print, New Delhi, India, ISBN:978-81-312-1859-4.
[3]David M Burton, 2012, Elementary Number Theory, Mc Graw Hill education (Higher Education), Seventh Indian Edition, New Delhi, India, ISBN: 978-1-25-902576-1.
[4] Roy B M, Formulation of solutions of a special standard cubic congruence of prime-power modulus, International Journal of science and engineering Development Research (IJSDR), ISSN: 2455-2631, Vol-04, Issue-05, May-19.
[5]Roy B M, Formulation of two special classes of standard cubic congruence of composite modulus- a power of three, International Journal of scientific research and engineering development (IJSRED), ISSN: 2581-7175, Vol-02, Issue-03, May-19.
[6]Roy B M, A Review and reformulation of the formulation of a standard cubic congruence of even composite modulus, International Journal of Research Trends and Innovations (IJRTI), ISSN: 2456-3315, Vol-04, Issue-11, Nov-19.
[7]Roy B M, Formulation of a class of standard cubic congruence of composite modulus-a product of power of three and power of an odd prime, International Journal of science and engineering Development Research (IJSDR), ISSN: 2455-2631, Vol-05, Issue02, Feb-20.

