RP-141: Another formulation of standard quadratic congruence of composite modulus Modulo a Primemultiple of a prime- power Integer

Prof B M Roy
Head, Department of mathematics Jagat Arts, Commerce \& I H P Science College, Goregaon
Dist: Gondia, M. S., India. Pin-441801.
(Affiliated to R T M Nagpur University)

Abstract

In this paper, the author considered a standard quadratic congruence of composite modulus modulo a prime multiple of a prime-power integer for formulation of its solutions. Previously it was formulated by the author but in a different way. After a rigorous study, the author succeed to find another formulation of the congruence for its solutions. Such a congruence always has exactly four solutions. The formulation is tested and verified by solving different numerical examples. The solutions can now be obtained in a short time. No need to use CRT. This is the merit of the paper.

Keywords: Composite Modulus, Formulation, Standard Quadratic Congruence.

INTRODUCTION

The author already has formulated the standard quadratic congruence of composite modulus- a product of two different odd primes in different cases [1] \& [2]. Here in this paper, the author considers a generalisation of these papers and wishes to formulate the said congruence: $x^{2} \equiv a \bmod p^{n} q$); p, q being different odd primes.

PROBLEM-STATEMENT: Here the problem is
"The formulation of the standard quadratic congruence of composite modulus of the type:

$$
\left.x^{2} \equiv a \bmod p^{n} q\right) ; p, q \text { being different odd primes. } "
$$

LITERATURE-REVIEW

The congruence under consideration was not formulated by earlier mathematicians. The readers used to apply CRT to get the solutions [3], [4], [5]. It is a long procedure. It is much complicated and time-consuming. The readers also faced difficulty to solve the individual congruence.

Previously it was formulated by the author in two special cases as when $a=p^{2} \& a=q^{2}$.
The congruence $x^{2} \equiv p^{2} \bmod p^{n} q$) has exactly $2 p$ - incongruent solutions, given by
$x \equiv p^{n-1} q k \pm p\left(\bmod p^{n} q\right) ; k=0,1,2, \ldots \ldots \ldots(p-1)$.
Also, the congruence $\left.x^{2} \equiv q^{2} \bmod p^{n} q\right)$ has exactly $2-$ incongruent solutions, given by $x \equiv p^{n} q k \pm p\left(\bmod p^{n} q\right) ; k=0$.
ANALYSIS \& RESULT

Case-I:
If $a=b^{2}$, then the congruence reduces to: $x^{2} \equiv b^{2} \bmod p^{n} q$).
Its two obvious solutions are given by $x \equiv \pm b\left(\bmod p^{n} q\right)$.
For the remaining two solutions, consider $\left.x \equiv \pm\left(p^{n} k \pm b\right) \bmod p^{n} q\right)$.
Then $x^{2} \equiv\left(p^{n} k \pm b\right)^{2}\left(\bmod p^{n} q\right)$

$$
\begin{aligned}
& \equiv\left(p^{n} k\right)^{2} \pm 2 \cdot p^{n} k \cdot b+b^{2}\left(\bmod p^{n} q\right) \\
& \equiv p^{n} k\left(p^{n} k \pm 2 b\right)+b^{2}\left(\bmod p^{n} q\right), \text { if } k\left(p^{n} k \pm 2 b\right)=q t . \\
& \equiv p^{n} \cdot q t+b^{2}\left(\bmod p^{n} q\right) \\
& \equiv b^{2}\left(\bmod p^{n} q\right) .
\end{aligned}
$$

Therefore, $\left.x \equiv \pm\left(p^{n} k \pm b\right) \bmod p^{n} q\right)$, if $k\left(p^{n} k \pm 2 b\right)=q t$, satisfies the congruence and hence gives two required solutions of the congruence for a value of k .

If $a \neq b^{2}$, then it can be expressed so as: $a+l . p^{n} q=b^{2}\left(\bmod p^{n} q\right)$.
Case-II: Let $b=p$.
Then the congruence reduces to the form $x^{2} \equiv p^{2}\left(\bmod p^{n} q\right)$
For the solutions, consider $x \equiv p^{n-1} q k \pm p\left(\bmod p^{n} q\right)$

$$
\text { Then, } \begin{aligned}
x^{2} & \equiv\left(p^{n-1} q k \pm p\right)^{2}\left(\bmod p^{n} q\right) \\
& \equiv\left(p^{n-1} q k\right)^{2} \pm 2 \cdot p^{n-1} q k \cdot p+p^{2}\left(\bmod p^{n} q\right) \\
& \equiv p^{n} q k\left(p^{n-2} q k \pm 2\right)+p^{2}\left(\bmod p^{n} q\right) \\
& \equiv p^{2}\left(\bmod p^{n} q\right)
\end{aligned}
$$

Therefore, $x \equiv p^{n-1} q k \pm p\left(\bmod p^{n} q\right)$ gives the solutions of the congruence.
But for $k=p$, the solutions becomes $x \equiv p^{n-1} q \cdot p \pm p\left(\bmod p^{n} q\right)$

$$
\begin{aligned}
& \equiv p^{n} q \pm p\left(\bmod p^{n} q\right) \\
& \equiv 0 \pm p\left(\bmod p^{n} q\right)
\end{aligned}
$$

This is the same solutions as for $k=0$.
Similarly, for $k=8,9 \ldots \ldots$, the solutions repeats as for $k=1,2, \ldots \ldots$
Therefore, all the solutions are given by
$x \equiv p^{n-1} q . k \pm p\left(\bmod p^{n} q\right) ; k=0,1,2, \ldots \ldots,(p-1)$.
These are the $2 p$ incongruent solutions of the said congruence.
Case-III: Let $b=q$.
Then the congruence reduces to the form $x^{2} \equiv q^{2}\left(\bmod p^{n} q\right)$
For the solutions, consider $x \equiv p^{n} q k \pm q\left(\bmod p^{n} q\right)$

$$
\text { Then, } \begin{aligned}
x^{2} & \equiv\left(p^{n} q k \pm q\right)^{2}\left(\bmod p^{n} q\right) \\
& \equiv\left(p^{n} q k\right)^{2} \pm 2 \cdot p^{n} q k \cdot q+q^{2}\left(\bmod p^{n} q\right) \\
& \equiv p^{n} q k\left(p^{n} q k \pm 2 q\right)+q^{2}\left(\bmod p^{n} q\right) \\
& \equiv q^{2}\left(\bmod p^{n} q\right)
\end{aligned}
$$

But for $k=1$, the solutions becomes $x \equiv p^{n} q \pm p\left(\bmod p^{n} q\right)$

$$
\equiv 0 \pm p\left(\bmod p^{n} q\right)
$$

This is the same solutions as for $k=0$.
Similarly, for $k=2,3 \ldots \ldots$, the solutions repeats as for $k=1,2, \ldots \ldots$
Therefore, all the solutions are given by
$x \equiv p^{n} q . k \pm p\left(\bmod p^{n} q\right) ; k=0$.
These are the two - incongruent solutions of the said congruence.

ILLUSTRATIONS

Example-1: Consider the example $x^{2} \equiv 4(\bmod 175)$.
It can be written as $x^{2} \equiv 4 \equiv 2^{2}\left(\bmod 5^{2} .7\right)$.
It is of the type: $\left.x^{2} \equiv b^{2} \bmod p^{n} q\right)$ with $b=2, p=5, q=7$.
It has exactly four solutions; the two obvious solutions are given by

$$
\begin{aligned}
x & \equiv \pm b\left(\bmod p^{n} q\right) \\
& \equiv \pm 2\left(\bmod 5^{2} .7\right) \\
& \equiv 2,173(\bmod 175)
\end{aligned}
$$

The remaining two solutions are given by

$$
\begin{aligned}
x & \left.\equiv \pm\left(p^{n} k \pm a\right) \bmod p^{n} q\right), \text { if } k\left(p^{n} k \pm 2 a\right)=q t \\
& \equiv \pm\left(5^{2} k \pm 2\right)\left(\bmod 5^{2} .7\right), \text { if } k(25 k \pm 2.2)=7 t \\
& \equiv \pm 25 k \pm 2)(\bmod 175), \text { if } k(25 k \pm 4)=7 t \\
& \equiv \pm(25.1-2)\left(\bmod 5^{2} .7\right) \text { as for } k=1,1(25.1-4)=7 t \\
& \equiv \pm 23(\bmod 175) \\
& \equiv 23,175-23(\bmod 175) \\
& \equiv 23,152(\bmod 175) .
\end{aligned}
$$

Therefore all the four solutions are given by

$$
x \equiv 2,173 ; 23,152(\bmod 175) .
$$

Example-2: Consider the example $x^{2} \equiv 25(\bmod 539)$.
It can be written as $x^{2} \equiv 25 \equiv 5^{2}\left(\bmod 7^{2} .11\right)$ with $b=5, p=7, q=11$.
It is of the type: $x^{2} \equiv b^{2} \bmod p^{n} q$).
It has exactly four solutions; the two obvious solutions are given by

$$
\begin{aligned}
x & \equiv \pm b\left(\bmod p^{n} q\right) \\
& \equiv \pm 5\left(\bmod 7^{2} \cdot 11\right) \\
& \equiv 5,534(\bmod 539)
\end{aligned}
$$

The remaining two solutions are given by

$$
\begin{aligned}
x & \left.\equiv \pm\left(p^{n} k \pm a\right) \bmod p^{n} q\right), \text { if } k\left(p^{n} k \pm 2 a\right)=q t \\
& \equiv \pm\left(7^{2} k \pm 5\right)\left(\bmod 7^{2} .11\right), \text { if } k(49 k \pm 2.5)=11 t . \\
& \equiv \pm(49 k \pm 5)(\bmod 539), \text { if } k(49 k \pm 10)=11 t . \\
& \equiv \pm(49.2-5)\left(\bmod 7^{2} .11\right) \text { as } \text { for } k=2,2(49.2-10)=11 t \\
& \equiv \pm 93(\bmod 539) \\
& \equiv 93,539-93(\bmod 175) \\
& \equiv 93,446(\bmod 539) .
\end{aligned}
$$

Therefore all the four solutions are given by

$$
x \equiv 5,534 ; 93,446(\bmod 539) .
$$

Example-3: Consider the example $x^{2} \equiv 49(\bmod 539)$.
It can be written as $x^{2} \equiv 49 \equiv 7^{2}\left(\bmod 7^{2}\right.$. 11) with $b=7, p=7, q=11$.
It is of the type: $x^{2} \equiv p^{2} \bmod p^{n} q$) and has exactly $2 p=2.7=14$ solutions, given by: $\quad x \equiv p^{n-1} q k \pm p\left(\bmod p^{n} q\right) ; k=0,1,2, \ldots \ldots,(p-1)$.

$$
\equiv 7^{2-1} \cdot 11 k \pm 7\left(\bmod 7^{2} .11\right) ; k=0,1,2,3,4,5,6
$$

$$
\begin{aligned}
& \equiv 77 k \pm 7(\bmod 539) \\
& \equiv 0 \pm 7 ; 77 \pm 7 ; 154 \pm 7 ; 231 \pm 7 ; 308 \pm 7 ; 385 \pm 7 ; 462 \pm 7(\bmod 539)
\end{aligned}
$$

$$
\equiv 7,532 ; 70,84 ; 147,161 ; 224,238 ; 301,315 ; 378,392 ; 455,469(\bmod 539) .
$$

These are the fourteen incongruent solutions of the said congruence.
Example-4: Consider the example $x^{2} \equiv 121(\bmod 3773)$.
It can be written as $x^{2} \equiv 121 \equiv 11^{2}\left(\bmod 7^{3} .11\right)$ with $b=11, p=7, q=11$.
It is of the type: $x^{2} \equiv q^{2} \bmod p^{n} q$) and has exactly two solutions, given by

$$
\begin{aligned}
x & \equiv p^{n} q k \pm q\left(\bmod p^{n} q\right) \\
& \equiv o \pm q\left(\bmod p^{n} q\right) \\
& \equiv \pm q\left(\bmod p^{n} q\right) \\
& \equiv \pm 11(\bmod 3773) \\
\equiv & 11,3762(\bmod 3773) .
\end{aligned}
$$

CONCLUSION

Therefore, it is concluded that the congruence $x^{2} \equiv b^{2} \bmod p^{n} q$) has exactly four incongruent solutions; two of them are given by $x \equiv \pm b\left(\bmod p^{n} q\right)$; the other two solutions are given by $\left.x \equiv \pm\left(p^{n} k \pm a\right) \bmod p^{n} q\right)$, if $k\left(p^{n} k \pm 2 a\right)=q t$.

REFERENCES

[1] Roy B M, Formulation of solutions of a standard quadratic congruence of composite modulus- an odd prime multiple of power of an odd prime, International Journal of Scientific research and Engineering development (IJSRED), ISSN: 2581-7175, Vol-03, Issue-02, March-2020.
[2] Roy B M, Solving a standard quadratic congruence of composite modulus modulo a product of two different odd primes in Two Special Cases, International Journal of Scientific research and Engineering development (IJSRED), ISSN: 2581-7175, Vol-03, Issue-04, Jul-Aug-20.
[3]Roy B M, (2016) Discrete Mathematics \& Number Theory, Das Ganu prakashan, Nagour (India), 1/e, ISBN:
[4]Thomas Koshy, (2009) Elementary Number Theory with Applications, Academic Press (An Imprint of Elsevier), ISBN: 978-81-312-1859-4.
[5] Zuckerman H. S., Niven I., Montgomery H. L., (2008) "An Introduction to The Theory of Numbers", 5/e, Wiley India (Pvt) Ltd, ISBN: 978-81-265-1811-1.

