
ISSN: 2455-2631                                                    © April 2020 IJSDR | Volume 5, Issue 4 

IJSDR2004079 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 437 

 

Life Cycle of Software Development Maintainability 

Attributes Model using Fuzzification: A Review  
 

Poonam1, Rekha2 

 
1M. Tech. Scholar, 2Assistant Professor 

CBS Group of Institutions, Jhajjar, Haryana 

Maharishi Dayanand University, Rohtak. 

 

Abstract: Software Development goes through a number of phases. These phases together make a Life Cycle of Software 

Development. It is estimated that more that there are more than 100 billion lines of code in production in the world. As 

much as 80% of it is unstructured and not well documented. Maintenance can lessen these problems. Maintainability is the 

ability to keep the system up to date after deploy to the customer site. We studied a number of software maintainability 

measurement metrics and also new proposed techniques. In our research we focused on how to measure the software. After 

considering these factors we can conclude that how much software is maintainable This means that how the maintenance 

cost can be reduced and how much efforts will be required to reduce the cost. So we will use a fuzzy logic to implement these 

factors. We found that fuzzy logic can be used to model uncertainty for these factors. Fuzzy logic is a way to deal with 

reasoning that is approximate rather than precise. Then by fuzzy logic we measured the maintainability. In our research, 

we considered experimental data. First we applied these factors on data and then by fuzzy logic we measured the 

maintainability. This work based on Rule Base consists of number of rules. Rule structure is like “If this and/or If this then 

this. 

 

Keywords: Software Development, Life Cycle of Software, software maintainability, fuzzy logic 

 

Introduction 

Maintenance is the concept most commonly correlated with more robust infrastructure and considerably lower long-term costs. 

Description of maintenance commonly find, for example: "The effort required to fix errors, boost efficiency or other attributes after 

delivery of a software program or component, The climate has been modified. Or "A program may be sustained if only minimal 

efforts are made to fix minor bugs." 

 

Perhaps too easy, naturally. The second is particularly misleading, since in reality it is a tautology rather than a concept. The 

response would be "its correction needs little effort if you wondered what a minor bug is." In addition to this very native description, 

Specific metric methods aim to characterize main tenability as conformity with a collection of rules that suit the observable 

characteristics of the system, such as high consistency, minimal coupling, etc. The key concern is the absence of clear rationale for 

the chosen requirements, which sometimes appear to address some technological elegance instead of enhancing program 

management efficiently. We published a report in German business organization on network maintenance activities in 2003. Among 

the 47 interviewees, 60% said that software maintenance is regarded as an "important issue", but only 20% have carried out certain 

quality checks on maintenance. The maintainability testing requirements used by these 20% range from object-oriented, cyclical 

complexity, and a small number of lines per process, to a brief description to OMG's service-oriented and model-driven architecture.  

 

Moreover, there is nothing in common about what is actual "maintenance", whether it can be measured and whether it can be 

performed. 

 
 

Figure1: Maintenance Process 

 

There is some uncertainty about "standing," whether it can be reached and whether it can be done. There are some misunderstanding. 

Through using "maintainability" as a concept, this ambiguity can quickly be clarified and overcome. The "fitness" finish is used to 

turn the "maintainable" term into a product and thereby mark it as a machine object. In addition, the term "retention" applies to the 

following concepts: the act of "retention" (verb) is an entity or software program that we discover. However, the assumption that 

the program is very unmaintainable is the characteristics of the machine, and there are many other considerations, such as training 

http://www.ijsdr.org/


ISSN: 2455-2631                                                    © April 2020 IJSDR | Volume 5, Issue 4 

IJSDR2004079 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 438 

 

maintenance personnel, managing operational knowledge, and appropriate resources affecting software maintenance activities. 

Ignore this flaw is most obvious in terms of "readability".  

  

Review of Literature 

Chandrashekhar Rajaraman, Micheal R Lyu [1] Describe certain problems that may result in software unreliability in evaluating 

and managing C + + applications. Likewise, logic and other analytical facts quantify the complexity of C++ systems written in other 

object-oriented languages (such as lines of code, loop reduction, and computer science indicators) because they cannot solve the 

subject. I tried to explain what is not enough to have limitations such as legacy and encapsulation. For C++ systems, certain steps 

are identified with a definition of functional decomposition – coupling. The three commonly employed difficulty indices are 

measured for five C++ systems, which are contrasted in two of the class couplings and AMC and parallels. Our preliminary findings 

indicate that compared to the three commonly used sensitivity indicators, paired testing is more directly related to testing and 

maintenance issues. 

 

Aggarwal et. al. [3] The amount of time and energy taken to maintain the program in service absorbs about 40%-70% of all 

development cycle costs. This thesis suggests an automated device repair calculation of four parameters using a fuzzy model. The 

analysis also provides analytical evidence on project maintenance periods used to test the model suggested. 

 

Alain April et. a. [4] Discuss the assessment and optimization of software sustaining feature. A shortage of design frameworks 

enables the assessment, monitoring and quality development of program repair functions. The SMmm discusses program 

engineering for the particular tasks while maintaining a structure close to the CMM maturity model. It is intended as an extension 

to this pattern. Practices are the foundation of the SMmm. Computer engineering experience, universal norms and landmark 

literature. Our aim, scale, framework, architecture and initial validation are provided. 

 

Shyam R. Chidamberand Chris F. Kemerer The motivation of the evaluation process is an important part of quality control. 

With its core position in the implementation and usage of information technology, administrators rely more and more on process 

development of information technology. 

 

Design field of applications. There were two impacts on this focus. The first is that this desire has stimulated a range of different 

and/or improved solutions to software creation, maybe with object-orientation (OO) the most popular. Third, an growth in demand 

for electronic metrics or instruments used to monitor operations has been centered on process management. The need for these 

interventions is particularly evident as a company adopts a modern technology that has yet to acquire proven procedures. 

 

This thesis tackles these criteria by creating and applying a modern series of OO architecture metrics. Prior performance 

measurement work has typically been subject to one or more forms of critique, while adding to the awareness of software 

engineering processes in the region. Those involve the absence of a theoretical basis, inadequate generalization, or development 

relies too much on the calculation of suitable resources, and too much energy for selection. The Bunge ontology became the 

scientific basis between Wand and Weber for the OO concept approaches. Six concept indicators were developed and analytically 

tested against a collection of measuring criteria previously indicated. The set of requirements for program metry assessment and a 

short overview of the scientific data collection sites are given for Weyuker. To order to show viability and propose an observational 

comparison of such interventions on two field locations, an interactive data collection method was eventually established and 

introduced. How administrators may use these metrics to enhance operations. 

 

Jane Huffman Hayeset. al. The Adaptive Maintenance Effort Modell (AMEffMo) develops a concept for the calculation of 

adaptive program maintenance in person, for the purpose of estimating adaptive maintenance in one-to-one period. The regression 

trends have been effective in estimating proactive maintenance practices and the valuable knowledge for managers and maintainers. 

 

Jane Huffman Hayes et. al.  Introduce the paradigm of observation and adoption (OMA) which assists organizations, without 

committing themselves and implementing large-scale, enhancement of their software’s creation processes. In specific, the technique 

was used to enhance maintenance-oriented development procedures. The idea that tech teams naturally report about issues that 

perform or don't operate well is based on this innovative perspective. Then, teams searched their objects and recollections for 

incidents to identify components of apps, procedures, measurements, etc. For the management of devices, any calculation will 

instead be performed to insure that the process contributes to better management. To order to meet the requires, we introduce two 

preventive steps, a substance preventive and expected maintenance. 

 

Also investigated were other maintenance steps that can be included in the mine phase. Finally, the team formalizes and adopts 

mining operations that contribute to established observations of procedures, strategies or behaviors that improve the software 

product. Two development ventures and a web-based healthcare infrastructure operated by a wider commercial tech company, have 

been experimentally analyzed in OMA. 

 

Rikard Land explains the work that we have just started. We'll look at how the The "maintenance" of the program is modified as 

time passes and statistics on manufacturing devices are retained. They discuss the idea of 'maintenance,' our theories and solution. 

 

http://www.ijsdr.org/


ISSN: 2455-2631                                                    © April 2020 IJSDR | Volume 5, Issue 4 

IJSDR2004079 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 439 

 

Warren Harrison et. al. Create a modern software maintenance model focused on an impartial judgment law that defines whether 

or not a specified software module can be effectively changed. The paper indicates that the early detection of shifting systems may 

be useful strategies for the productive distribution of maintenance capital by the usage of adjustment steps during release cycles. 

 

Scott L. Schneberger and Ephraim R. Mclean The operating network expense for the management of information technology 

applications represents the largest single life cycle. More recently, the field of computing has begun experiencing a major transition 

from the clustered to the centralized or distributed systems of computing. This paper explores a recent study field for software 

maintenance concentrating on how and how specifically software maintenance is influenced by emerging technologies in distributed 

computing environments. The topic appears to rely on two diameters of the information system design, based on the trade journal 

articles: the simplicity of modules and the sophistication of the structures. The bigger the machine elements, the better they are to 

control each other, but the tougher they are to tackle the entire program. This work was focused on a modern statistical paradigm 

on part numbers and variety, amount and selection, and the average pace of change for information management sophistication. For 

purposes addressed here, a report on the topic of the IS system and application-level developers, creators, programmers and 

consumer relations was undertaken on the secondary source details such as accounting costs for centralized device maintenance. 

 

The field research found that the complete sophistication of distributed systems analyzed exceeded their components' ease of use 

and usability. The paper also provides an outline of the evaluation and study of the new distributed computing technologies, 

including proposed areas of specialized work required based on the research findings and implications of the author. 

 

H. Dieterro Mbach and Bradfordt. Ulery  Ulery has a big part in both efficiency and management issues in the nature in large-

scale computing goods. Improving software maintenance needs better maintenance methodologies, better approval of product 

requirements before maintenance is published, and better designing methodologies to achieve the quality levels required to satisfy 

these parameters of approval. Systematic progress in maintenance involves awareness of current problems, capacity to change 

established practices and a willingness to track their performance. Measurements in information are a tool that helps the 

development cycle if implemented correctly. 

A top-down approach to correct implementation of metrics would be required where oriented changes seek to decide what data is 

to be gathered and how they are to be interpreted. Within this report, a realistic solution is proposed to enhance management of 

applications by measurements. This method is focused on general indicators and changes templates. Models, application and 

functional recommendations are provided for converting them to industrial maintenance. Finally, some descriptions of 

implementations of the real-world management method are addressed. 

 

George E. StarkIt describes the central role of many organizations in the maintenance of software. Those facets of products and 

processes which tend to influence the expense, timetable, efficiency and functionality of a software maintenance distribution are 

common for managers to define and calculate. This paper refers to the specific concerns of a single organization's technical service 

and addresses those actions on the basis of their responses. Attriving to maintain and engineering the areas of development, track 

progress over time, and help render choix among alternatives is assessed, both in the software maintenance phase and the resulting 

product. 

 

M. Burgin et. al. Describes the significant and fairly recent reuse of information Computer systems strategy. Application. It intends 

to establish more technical criteria for product reusability evaluation methods and mathematical theory. After the introduction, 

reusability is seen as a factor of usefulness in the second part. It allows you to take advantage of expertise in software reuse metric 

creation and usage. The third part describes and describes various formats and levels of software indicators. The fourth part is a 

formal description of the software indicators and their attributes. The work focuses on the development of information engineering 

and, in particular, on creating more effective measures of reuse. 

 

Melis Dagpinar and Jens H. Jahnke A great deal of criteria for evaluating object-oriented program characteristics, such as height, 

shield, stability and connection, have been suggested. The findings reveal that direct coupling parameters of the scale and import 

are important predictors of class retention, whereas the measurements of descent, unity and indirect / export coupling are not. 

 

Robert Lagerström , Pontus Johnson The theoretical model consists of organizations with corresponding features to construct 

business models of architecture. The Nose Such models offer guidance for the quantitative management review of the knowledge. 

In these evolving programs, IT decision makers use the model should be able to forecast the costs of evolving for specific software 

projects and collect risk analysis data. It encourages IT leaders to consider their project lists a focus and to prioritize reform 

programs. 

 

Priyanka Dhankhar and Harish Mittal Describe the management of applications is a measure of how easily a software program 

or feature can be adjusted for the purpose of fixing bugs, enhancing efficiency or other attributes or adapting to a changing setting' 

We provide an overview of the design of object-oriented applications in this article. They are necessary for ensuring reusability and 

expandability. . Through empirical review, to prove that object-oriented difficulties are usually not enough to quantify content 

written in other object-oriented languages, we will discuss issues such as encapsulation inheritance and text. , Information Sciences 

Metrics of Halstead and Cyclomatic difficulty of Mc Cabe. 

 

http://www.ijsdr.org/


ISSN: 2455-2631                                                    © April 2020 IJSDR | Volume 5, Issue 4 

IJSDR2004079 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 440 

 

Priyanka Dhankar and Harish MittalProvides product servicing as a function for all engineering departments as the program is 

shipped, configured and usable to the location of the client. The amount of time and energy taken to maintain the program in service 

absorbs about 40%-70% of all development cycle costs. A systematic test of object oriented computing focused on two criteria, 

class binding and cyclomatic complexity utilizing fused logic, is suggested in this report. In addition, this analysis provides 

observational evidence on class maintenance times used to test the method suggested. 

 

Megha and Harish Mittal:The easiest way to fix errors, boost efficiency or other characteristics is to calculate software 

maintenance, or adjust to the changing environment, utilizing a software program or part. Maintenance relies very much on the 

software form, as is commonly known. Maintenance of applications is a time consuming, expensive step of the life cycle of a 

software system. Over the full life cycle, the time and resources needed to run software consume approximately 40% to 70% of the 

cost. In this article, we will discuss the manner in which a paradigm introduced decreases the uncertainty and operational costs of 

programs and actions. Reduces or eliminates expensive downtimes and efficient uptime improvements. At times unplanned 

preventive works that have less effect on development may be carried out. 

 

Megha and Harish Mittal: Maintenance of software is a challenge undertaken by every designing party as the program is shipped, 

activated and usable at the customer's location. Maintenance relies very much on the software form, as is commonly known. 

Maintenance of applications is a time consuming, expensive step of the life cycle of a software system. This report suggests a 4-

parameter comprehensive analysis for software maintenance estimation. The time invested and resources required for the 

management of software are roughly 40% to 70%. Using these criteria the analysis should determine how repair expenses and 

resources are popular. We have therefore established a blurry model for device repair measurements. 

 

Conclusion  

Various techniques have been developed, including various major ductility factor measurement factors, such as Chandrasekhar. 

Consider four factors, such as the average number of real-time variables, average real-time span, and comment rate to measure the 

main persistence. We found that these variables provide a more detailed view of software maintenance. A fuzzy model can be used 

to estimate maintenance, and the results use empirical results to prove that the comprehensive maintenance value produces better 

results than a single input indicator. Since different values of the four parameters are considered, the values of these parameters 

should be small to keep maintenance costs low. Reduce the work of calculating sustainability.  

 

 

Future Scope 

Further work to increase the accuracy of measurement in this field may be undertaken to build such a framework. We suggest that 

this model be tested in real time. The time needed to correct this error in the maintenance period is determined when any error is 

found in the project. 

 

References 

[1] Rikard Land Mälardalen “Software Deterioration and Maintainability – A Model Proposal” in 1995 University Department of 

Computer Engineer 

[2] Khairuddin Hashim and Elizabeth Key “ A  Software Maintainability Attributes Model” Malaysian Journal of Computer Science 

[3] C. van Koten 1 and A.R. Gray ‘An application of Bayesian network  for predicting object-oriented software maintainability’ in 

2005 Department of Information Science,University of Otago, P.O.Box 56, Dunedin, New Zealand 

[4] K.K. Aggarwal et. al. ‘Measurement of Software Maintainability Using a Fuzzy Model’ Journal of Computer Sciences 1(4):538-

542, 2005  

[5] P. K. Suri1, Bharat Bhushan2 “Simulator for Software Maintainability” Kurukshetra University, Kurukshetra (Haryana) India 

IJCSNS International Journal of Computer Science and Network Security, VOL.7 No.11, November 2007 

[6] Markus Pizka and Florian Deißenböck ‘ How to effectively define and measure maintainability’ in 2007 

[7]Mehwish Riaz, Emilia Mendes, Ewan Tempero  ‘A Systematic Review of Software Maintainability Prediction and Metrics, New 

Zealand in2009978-1-4244-4841-8/09/$25.00 ©2009 IEEE 

[8]Priyanka Dhankhar1, Harish Mittal ‘Software Maintainability In Object Oriented Software’ in 2010 proc.conference 8th may 

2010. 

[9]Chikako van Koten Andrew Gray An Application of Bayesian Network for Predicting Object-Oriented Software Maintainability  

in  March 2005 ISSN 1172-6024 

[10]Berns, G., 1984 “Assessing Software Maintainability .”Communications of the  ACM, 27: 14-23. 

[11]Baker, A.L.et.al. and R.W.Witty, "A Philosophy for Software Measurement,"   Journal of Systems and Software, 12, 277-281 

(2000). 

[12]Wilde, N. and Ross Huitt: "Maintenance Support for Object- Oriented Programs," Proceedings of IEEE Conference on Software 

Maintenance  Wilde, N. and Ross Huitt:  "Maintenance Support for Object- Oriented Programs," Proceedings of IEEE Conference 

on Software Maintenance 

[13]Booch, G., "Object Oriented Development," IEEE Transactions on Software Engineering, SE-12,  211-221, 1986. 

[14]Halstead,Maurice H. “Elements of Software Science” Elsevier north Holland,New York,1997. 

[15]R. K. Bandi et. al. “Predicting Maintenance Performance Using Object-Oriented Design Complexity Metrics”, IEEE T Software 

Eng, 29, 1, Jan. 2003, pp. 77 – 87. 

http://www.ijsdr.org/


ISSN: 2455-2631                                                    © April 2020 IJSDR | Volume 5, Issue 4 

IJSDR2004079 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 441 

 

[16]Muthanna, S., K. Kontogiannis and B. Stacey, 2000. ‘A maintainability model for industrial software systems using design 

level metrics.’ Proc. Seventh Working Conf.  

[17].Land R.,:Measurement of Software Maintainability”, In Proceedings of Artes Graduate Student Conference, ARTES, 2002 

[18]Chandershekhar  Rajaraman Michael R. Lyu “Reliability and Maintainability related software metrics in C++” 2003. 

 

http://www.ijsdr.org/

