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Abstract: As the installations of distributed generators (DGs) within distribution systems increasing, power flow analysis of 

unbalanced distribution networks needs special algorithms to handle multiple sources. In this paper, the development of an 

unbalanced three phase power flow algorithm which can handle multiple sources is described. According to the control and 

characteristics of output power, DGs can be specified as constant power factor model and constant voltage model or variable 

reactive power model. In this paper, these two models are all derived and integrated into the proposed load flow method. 

This load flow is capable of switching the DG mode of operation from constant voltage to constant power factor in the 

presence of multiple DGs. This algorithm requires dynamic data structure (DDS) to store the details of the branches. The 

algorithm uses basic principles of circuit theory and can be easily understood. This algorithm has been tested with IEEE 8 

bus and IEEE 25 bus unbalanced radial distribution networks and the results are quite promising and are in agreements 

with the literature.  

 

Index Terms: unbalance radial distribution networks, power flow, distributed generation. 

 

I. INTRODUCTION 

 

Distribution automation & optimization needs fast and efficient power flow which needs to be run repeatedly. The distribution 

network is inherently an unbalanced network due to a large number of unequal single-phase loads and the unsymmetrical spacing 

between the conductors. Due to these factors, conventional power flow algorithms used for transmission system studies do not show 

good convergence properties for distribution systems. Since dispersed generators are becoming prevalent in distribution systems, 

integrating multiple DGs in to distribution power flow algorithm has become an important task. Depending on the characteristics 

and control status of a generator, it may be operated in one of the following modes: 

1. To output power at fixed real and reactive power.  

2. To output power at a specified power factor. 

3. To output power at a specified terminal voltage (or) variable reactive power. 

 

The generator operating in first two modes can be equivalently represented as PQ node model, which require a little treatment in 

the power flow algorithm and the third mode of operation is well represented as PV node model. This model needs some special 

procedure in the load flow algorithm for maintaining its voltage magnitude and to monitor its reactive power flow capability. 

A lot of work has been done for power flow solution of balanced and unbalanced redial distribution networks.Cheng and 

Shirmohammadi [11] proposed a load flow solution for real-time distribution system and it gives some initial discussions on a PV 

node concept in unbalanced power flow. 

In this paper we developed an unbalanced distribution power flow algorithm using Dynamic Data Structure (DDS) and PV node 

sensitivity matrix. This algorithm can handle multiple DGs for their both modes of operation (PV and PQ). This algorithm is tested 

for the impact of DGs on the two unbalanced radial test systems by considering all the loads as constant power loads and the results 

are presented. However, this algorithm can also handle composite load modeling. 

 

II. UNBALANCED POWER FLOW 

 

The proposed unbalanced power flow algorithm uses Dynamic Data Structure (DDS) to store the details of the branches. 

 
Fig. 1 a simple radial network with several laterals 
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The dynamic data structure is created by using the pseudocode presented in[2].With the help of this pseudocode, the first branch 

labeled I as shown in Fig.1 is formed by Starting at the main substation bus and sequentially considering buses until it finds one 

that has several branches leaving from it. It builds the first branch from bus number 1 up to bus number 3 where two branches 

leaves. Thus the branch I consists of three buses. From the bus 3 two branches emanates naming II and III. This structure stores 

pointers that point towards the structures storing details of branches II and III. This process proceeds until data structures for all the 

branches are built. The data structure storing details of branch II is shown in Table. I. 

TABLE I 

Details stored in branch II 

                       

 

 

 

 

 

 

 

 

  After the DDS is formed for the system, the load flow is started at the end node of newly created branch V, with reference to Fig.1. 

Once the load flow has started from the “Start Bus” (an end bus), it can continue to solve the currents in branches upwards (towards 

the substation) until the head bus of that particular branch has been reached. This is explained by taking sample three buses in the 

system as shown in Fig. 2. 

 

 
Fig. 2 The sample three buses in the system 

 

The load current at node ‘j’ is find using equation (1) and which will be equal to the current in branch ‘ij’. The load current is written 

by assuming that the load draw constant complex power (S = P + jQ). It is further assumed that all three-phase loads are star 

connected and all double- and single-phase loads are connected between line and neutral. The double-phase and single-phase loads 

are modeled by setting the complex power of the non-existing phases to zero. 

  

                                                                                                                             (1) 

 

For the better starting of the power flow algorithm, the voltages at all nodes are taken equal to the substation voltage. And then the 

current in branch ‘hi’ can find applying KCL at node ‘i’ and is given below. 

                                                                                                                        (2) 

 

Like this the currents in the branches towards the head bus are calculated. When the branch head bus has been reached, the load 

flow program must look at the branch parent bus and see if the branch currents have been done for all of the buses below that parent 

bus. Then continue to solve the node voltages using   equation (3) downwards (from the substation). 

  

                                                                (3) 

 

Branch II 

No. of busses (03) No. of branch 

emanates (02) 

04 

05 

06 

07 

17 
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In the above equation (3) the phase impedance matrix (3x3) for each branch is obtained from the line data, spacing configuration 

and phasing information is explained in [9].For the double-phase and single-phase line sections the phase impedance matrix will 

have entries zeros in place of missing phases [5]. Once the voltages are calculated at all nodes at the end of first iteration, these 

voltages can be used to find the node currents for the back word sweep for the next iteration. The algorithm stops if the changes in 

the computed bus voltage magnitudes are the same in two successive iterations. 

 

III. POWER FLOW ALGORITHM WITH DISTRIBUTED GENERATION 

 

According to the characteristics and control on the output power, the DGs can be modeled as constant power factor model for small 

DGs and constant voltage or variable reactive power model for large DGs. The constant power factor model can be taken as PQ 

node model in the power flow algorithm, and constant voltage model or variable reactive power model is taken as PV node model 

in the power flow algorithm.  

The methodology for modeling PV node in the power flow algorithm is explained as follows. After the power flow explained in 

section II is converged, suppose the voltage magnitudes at PV nodes is not equal to the scheduled values, In order to obtain the 

scheduled voltage magnitude at the PV node, we need to determine the correct amount of reactive power generated by the unit. The 

reactive power generation can be found from reactive current injection. Therefore, the PV node voltage magnitude can be 

compensated by finding the reactive current injection at each PV node. Since the relation between reactive current injection and 

magnitude V is nonlinear, reactive current can only be determined iteratively.  

The methodology followed for modeling PQ node is model it as negative load and inject the specified active and reactive powers 

in to the node. 

Since the terminal voltages may be unbalanced, the injected currents may also be unbalanced. If there is a large imbalance in the 

injected currents the machine may be shut down by its protection system. 

The detailed iterative procedure for power algorithm with the DGs is explained as follows, 

 

1. Run the unbalanced radial distribution power flow as explained in section II. 

2. After the load flow is converged, for the outside kth iteration, check the type of DGs available. 

3. If the DGs available are output power at constant power factor then model that nodes as PQ node and inject complex powers 

specified by the generator in to each phase Sgi
a, Sgi

b & Sgi
c
 at that node by taking them as negative load. 

  Where,  

                                                                                    (4) 

The power injections in to each phase are found by dividing the total specified power by three. 

4. If the DGs available are output power at constant voltage or variable reactive power the model that node as PV node. And 

calculate the voltage mismatches at all the PV nodes as, 

                                              ΔVi
k = |Vi

sp| - |Vi
cal (k)|   for all the PV nodes ‘i’                                                       (5) 

5. If any of the ΔVi
k is not less than the specified tolerance, then reactive current injection at the PV node in order to maintain the 

specified voltage needs to be calculated for the kth iteration. Reactive current injection is calculated using equation (6). 

                                                    [ΔIq] k = [Zpv]-1 [̄ΔV]k                         (6) 

Where, the size of [̄ΔV] k & [ΔIq] k is 3*n x1. (‘n’ indicates the number of PV busses). And [Zpv] is the PV node sensitivity matrix. 

The procedure to form [Zpv] is explained in next step. 

6. The [Zpv] can be formed by observing the following numerical properties of its entries. The diagonal entry, Zii in [Zpv] is equal 

to the modulus of the sum positive sequence impedance of all line sections between PV nodes ‘i’ and the root node (substation bus). 

Since all the lines are three phase line sections, the size of Zii is 3x3. If from the root node any two PV nodes, i and j, have different 

paths, then the off diagonal entry Zij (size 3x3), is zero. If ‘i’ and ‘j’ share a piece of common path to the root node, then Zij is equal 

to the modulus of the sum positive sequence impedance of all line sections on this common path. Based on these, [Zpv] can be 

formed by identifying the path between PV nodes and the root node. The dimension of [Zpv] is equal to three times the number of 

PV nodes since it consists of 3x3 block sub matrices. 

7. If the reactive power generations (Q without limits) were unlimited at the PV node, we would inject the reactive currents at 90 

degrees leading the corresponding node voltages Vi 
a, Vi 

b
 & Vi 

c
 at each PV node. The reactive current to be injected at the i th PV 

node is given in equation (7). 

                                                                                       (7) 

Where δ vi
a
, δ vi

b
 & δ vi

c
 are the voltage angles of the three phases at the ith PV node. 
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8. Now, to find the reactive power injection needed to eliminate the voltage mismatch at kth iteration is obtained by applying the 

KCL at node ‘i’ at kth iteration for the Fig.3.     

 
Fig. 3 a sample two nodes in the system with DG placed at node ‘i’ 

 

                                                                                                                                (8) 

Where, [Q hi ]k
  is the reactive power flowing in the line ‘hi’ for the kth iteration. It can find from equation (9) 

                                                                                                                              (9) 

The branch currents in equation (9) at the kth iteration are calculated as,  

                                                                                                                                                             (10) 

The reactive power generation needed at ith PV node for kth iteration is, 

                                                                                                                             (11) 

9. Then  inject  complex power generations at the PV nodes for the kth iteration as,  

                                                                                                                       (12) 

Where, Pgi is the specified real power generation at the ith PV node.        

10. If the reactive power generations (Q with limits) were limited at the PV node, then reactive power limits must be checked first. 

The total 3-ɸ reactive power needed at ith PV node is the sum of reactive power generations of three phases. 

                                               (Q gi
γ) k = (Q gi

a
 )k

 + (Q gi
b

 )k
 + (Q gi

c
 )k                                                            (13) 

11. The (Qgi
γ)k is the compared with the reactive power generation limits, if the Q gi

γ is within the limits, i.e.,  

                                                           Q gi, max ≤ (Q gi
γ )k  ≤ Q gi, max  

Then inject the complex power as given equation (12). 

12. Otherwise, if (Qgi
γ) violates any reactive power generation limits, it will be set to that limit, divided by three for three phases. 

i.e., 

If Q gi
γ ≤ Q gi, min then set Q gi

γ = Q gi, min                                   and (Q gi
a
 )k

 = (Q gi
b
 )k

 =(Q gi
c
 )k =Q gi, min / 3 

If Q gi
γ ≥ Q gi, max then set Q gi

γ = Q gi, max                             and (Q gi
a
 )k

 = (Q gi
b
 )k

 =(Q gi
c
 )k = Q gi, max / 3 

These reactive power generations are combined with the active power generations at that node and inject into the node.  

13. Now set k=k+1 and run the load flow with the complex power injections at the PV nodes and PQ nodes. 

14. Stop the iterations when the voltage mismatches at all the PV nodes is less than the threshold values or the changes in the bus 

voltage magnitudes in two successive iterations at all nodes are less than the threshold values. 

The flow chart for the above algorithm is given in Fig. 6. 

IV. RESULTS 

The impact of the DGs on the distribution network is examined on two unbalanced distribution networks with the algorithm 

presented in this paper.  
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A. Example 1 

 

A sample system 14.4 kV of 8 buses shown in Fig. 4 has been taken from the Taiwan Power Corporation [12]. It is assumed that 

the transformer at the substation is balanced, voltage regulators and capacitors at various buses is neglected. The base values of the 

system are chosen 14.4 kV and 300 kVA. The convergence tolerance specified for the load flow analysis is 0.00001 p.u. and the 

convergence tolerance for voltage mismatches at PV nodes is taken as 0.0001 p.u. The load flow solution without DGs and impacts 

of DGs on the system with the following cases is presented in the Table II.  

Without DGs: The first two columns in the Table II is the power flow solution of the system without injecting DGs into it. 

 

Case-I: From the Table-II, the case- I is the power flow solution of the system when a 1-ɸ  DG is connected at node 6 between the 

phase C and neutral with injecting 30 kVA at constant power factor 0.8.This node  is modeled as PQ node for the power flow 

analysis. It is found that voltage profile is improved at all busses when compared with without DGs. 

 

Case-II: A 1-ɸ DG is placed at node 6 between phase C and neutral with injecting 30 KW and it has no limits on reactive power 

generation. At the end of the convergence to get the voltage profile as in Table-II the generator is required to generate reactive 

power 73.726 kVAR. It is found that phase voltage at bus 6 is 1 p.u.  

Case - III: The 1-ɸ DG is placed at node 6 between phase C and neutral with injecting 30 KW and the generator has the limits on 

the reactive power -24 kVAR ≤ Q ≤ 24 KVAR. Since it has limits on reactive power generation the voltage profile is less than case-

II. 
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Fig. 6 Flow chart for the unbalanced power flow with multiple DGs 

Find voltage mismatch                                       

ΔVi
k = |Vi
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Set that node as PQ node &                                                  

If (Qgi
γ) k

 ≤ Qgi min then set (Qgi
γ) k
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& find [Qgi ]k 
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If (Qgi
γ) k

 ≥ Qgi max then set (Qgi
γ) k = Qgi max 

& find [Qgi ]k 

No 

Inject complex powers at PV nodes 

using eq (12) 
Set Qgi

γ
 = Qgi

γ & find [Qgi ]k 

Inject complex powers at 

PV nodes using eq (12) 

                      Is                      

Qgi min ≤ (Qgi
γ) k

 ≤ Qgi 

Generators have 

limits on Q? Yes 

Yes 

No 

No 

Find the reactive power needed by the 

generators [Q gi ]k using eq (11) 

Find the reactive current injection 

needed to eliminate voltage mismatch 

for all PV nodes using eq (7) 

 k =k+1  

Is |ΔVi
k| < Ԑ, for 

all ‘i’ 

Stop 

Yes 

Inject complex powers at PQ 

nodes  

Run the unbalanced load flow once 

Check for 

convergenc

Stop 

 No 

Yes 

PV node 

PQ node 
PQ node 

(or)                    

No 

Check for 

convergence  
 j =j +1 

Set k=1 

Compute the branch currents towards the substation using eq (2) and compute 

the node voltages from the substation using eq (3) 

Set j=1 

Create PV node sensitivity matrix 

Create Dynamic Data Structure 

   Start 

   Initialize all the values 

Read system data 
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Fig. 4 IEEE-8 bus unbalanced radial distribution network 

TABLE II 

Power flow solution of IEEE-8 bus system 

 

Node no. Without DGs Case -I  Case -II Case -III 

V  in P.U V  in (rad) V in P.U V  in (rad) V in P.U V  in (rad) V in P.U
 

V  in (rad)
 

2a 0.9975 -0.0009 0.9972 -0.0008 0.9970 -0.0002 0.9974 -0.0006 

2b 0.9969 -2.095 0.9969 -2.0959 0.9965 -2.0965 0.9967 -2.0958 

2c 0.9961 2.0918 0.9971 2.0924 0.9990 2.0918 0.9969 2.0915 

3b 0.9944 -2.095 0.9944 -2.096 0.9940 -2.0965 0.9942 -2.0958 

3c 0.9955 2.0913 0.9964 2.0919 0.9984 2.0913 0.9963 2.091 

4c 0.9932 2.0913 0.9941 2.0918 0.9960 2.0913 0.994 2.091 

5c 0.9934 2.0918 0.9954 2.0924 0.9988 2.0903 0.9947 2.0908 

6c 0.9924 2.0918 0.9956 2.0924 1.000 2.0888 0.9943 2.0901 

7a 0.9940 -0.0009 0.9937 -0.0008 0.9935 -0.0002 0.9940 -0.0007 

8b 0.9897 -2.095 0.9898 -2.096 0.9893 -2.0966 0.9895 -2.0958 

 

B. Example 2 

 

A 4.16 kV IEEE 25 has taken from [7] .It is assumed that the transformer at the substation is balanced, voltage regulators and 

capacitors at various buses is neglected. For the load flow, base voltage and base MVA are chosen as 4.16 kV and 1000 kVA 

respectively. 

 

Without DGs: Table-III is the power flow solution of the system without injecting DGs into it. 

Case-I: two DGs are injected in the system. The first 3-ɸ DG is connected at bus number 15 is output 3000 KW and it has no limits 

on the reactive power generation hence it is modeled as PV node. The second 3-ɸ DG placed at bus 18 is output 300 kVA at 0.8 

p.f, which is modeled as PQ node. At the end of the power flow algorithm to get the voltage profile as in Table-IV the generator is 

required to generate total reactive power 4252.1 kVAR. The Table-IV presents the power flow solution and the phase voltages at 

bus 15 are found to be 1 p.u. 

Case-II: The 3-ɸ DG placed at bus 15 with injecting total power 1800 KW and the generator has the limits on the reactive power -

1350 kVAR  ≤ Q ≤ 1350 kVAR. The Table-V Presents the power flow solution. 
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TABLE III 

Power flow solution of IEEE-25 bus system without DGs 

Node no. 
aV

in P.U
 aV 

in rad.
 

bV
in P.U

 bV 
in rad.

 
cV

in P.U
 cV 

in rad.
 

1 1 0 1 -2.094 1 2.094 

2 0.9859 -0.0047 0.9878 -2.097 0.9887 2.089 

3 0.9836 -0.0054 0.9849 -2.097 0.9863 2.088 

4 0.9822 -0.0058 0.9833 -2.098 0.9856 2.087 

5 0.9811 -0.0058 0.9823 -2.098 0.9847 2.087 

6 0.9771 -0.0048 0.9816 -2.096 0.9821 2.089 

7 0.9750 -0.0048 0.9796 -2.096 0.9803 2.089 

8 0.9693 -0.0049 0.9764 -2.096 0.9765 2.089 

9 0.9648 -0.0050 0.9748 -2.096 0.9768 2.089 

10 0.9619 -0.0050 0.9729 -2.097 0.9771 2.089 

11 0.9594 -0.0061 0.9724 -2.097 -- -- 

12 0.9582 -0.0061 -- -- -- -- 

13 -- -- 0.9716 -2.097 -- -- 

14 0.9661 -0.0049 0.9729 -2.095 0.9706 2.089 

15 0.9640 -0.0049 0.9708 -2.095 0.9687 2.089 

16 -- -- -- -- 0.9694 2.089 

17 0.9693 -0.0049 0.9764 -2.096 0.9765 2.089 

18 0.9816 -0.0054 0.9822 -2.097 0.9829 2.087 

19 0.9805 -0.0052 0.9807 -2.097 0.9832 2.087 

20 -- -- 0.9783 -2.097 -- -- 

21 -- -- -- -- 0.9789 2.087 

22 -- -- -- -- 0.9765 2.087 

23 0.9809 -0.0057 0.9817 -2.098 0.9850 2.087 

24 -- -- 0.9791 -2.099 0.9843 2.087 

25 -- -- 0.9759 -2.099 -- -- 

 

TABLE IV 

Case - I 

Node no. 
aV

in P.U
 aV 

in rad.
 

bV
in P.U

 bV 
in rad.

 
cV

in P.U
 cV 

in rad.
 

1 1 0 1 -2.094 1 2.094 

2 0.9978 -0.009 0.9974 -2.102 0.9989 2.086 

3 0.9966 -0.010 0.9955 -2.102 0.9974 2.085 

4 0.9952 -0.010 0.994 -2.103 0.9966 2.085 

5 0.9942 -0.010 0.993 -2.103 0.9957 2.085 

6 0.9957 -0.017 0.9966 -2.108 0.9981 2.079 

7 0.9936 -0.017 0.9946 -2.108 0.9963 2.079 

8 0.9946 -0.0255 0.9968 -2.115 0.9983 2.073 

9 0.9902 -0.025 0.9952 -2.115 0.9985 2.073 

10 0.9874 -0.025 0.9934 -2.116 0.9988 2.073 

11 -- -- 0.9929 -2.116 0.9988 2.073 

12 0.9838 -0.026 -- -- -- -- 

13 -- -- 0.9921 -2.116 -- -- 

14 0.9980 -0.033 0.9987 -2.122 0.9983 2.066 

15 0.9999 -0.038 0.9999 -2.126 0.9999 2.062 

16 -- -- -- -- 0.9971 2.066 

17 0.9946 -0.025 0.9968 -2.115 0.9983 2.073 

18 0.9967 -0.010 0.9949 -2.102 0.9958 2.085 

19 0.9956 -0.009 0.9934 -2.102 0.9961 2.085 

20 -- -- 0.9910 -2.102 -- -- 

21 -- -- -- -- 0.9919 2.085 

22 -- -- -- -- 0.9895 2.085 

23 0.9939 -0.010 0.9923 -2.103 0.9960 2.085 

24 0.9939 -0.010 -- -- 0.9953 2.085 

25 -- -- 0.9866 -2.104 -- -- 
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Table V 

Case- II 

Node no. 
aV

in P.U
 aV 

in rad.
 

bV
in P.U

 bV 
in rad.

 
cV

in P.U
 cV 

in rad.
 

1 1 0 1 -2.094 1 2.094 

2 0.9915 -0.002 0.9931 -2.096 0.9933 2.091 

3 0.9891 -0.003 0.9901 -2.096 0.9909 2.090 

4 0.9877 -0.004 0.9886 -2.097 0.9902 2.089 

5 0.9867 -0.003 0.9876 -2.097 0.9892 2.089 

6 0.9880 -0.003 0.9920 -2.095 0.9915 2.091 

7 0.9859 -0.003 0.9900 -2.095 0.9896 2.091 

8 0.9855 -0.003 0.9919 -2.095 0.9905 2.091 

9 0.9810 -0.003 0.9903 -2.096 0.9908 2.092 

10 0.9782 -0.003 0.9885 -2.096 0.9911 2.092 

11 -- -- 0.9880 -2.096 0.9911 2.092 

12 0.9745 -0.004 -- -- -- -- 

13 -- -- 0.9872 -2.096 -- -- 

14 0.9874 -0.003 0.9934 -2.095 0.9894 2.091 

15 0.9884 -0.003 0.9944 -2.095 0.9903 2.091 

16 -- -- -- -- 0.9882 2.091 

17 0.9855 -0.003 0.9919 -2.095 0.9905 2.091 

18 0.9872 -0.003 0.9875 -2.096 0.9875 2.09 

19 0.9861 -0.003 0.9860 -2.096 0.9877 2.09 

20 -- -- 0.9836 -2.096 -- -- 

21 -- -- -- -- 0.9835 2.09 

22 -- -- -- -- 0.9811 2.09 

23 0.9865 -0.003 0.9869 -2.097 0.9896 2.089 

24 0.9865 -0.003 -- -- 0.9889 2.089 

25 -- -- 0.9812 -2.098 -- -- 

 

V. CONCLUSION 

In this paper a 3-ɸ unbalanced radial distribution power flow algorithm which can handle multiple DGs is presented. The impact of 

DGs on the system voltage profile has seen. It is basically a Forward Backward Sweep based method which requires dynamic data 

structure (DDS) to store the details of a branches of RDS and PV node sensitivity matrix to find the reactive current injections at 

the PV nodes. The proposed method has good convergence property for any practical distribution networks with practical R/X ratio.  
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