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Abstract: Android has become the most popular mobile 
plat- form due to its openness and  flexibility.  Meanwhile,  
it  has  also become the main target of massive mobile 
malware. This phenomenon drives a pressing need for 
malware detection. In this paper, we propose TrafficAV, 
which is an effective and explainable detection of mobile 
malware behavior using network traffic. Network traffic 
generated by mobile app is mirrored from the wireless 
access point to the server for data analysis. All data analysis 
and malware detection are performed on the server side, 
which consumes minimum resources on mobile devices 
without affecting the user experience. Due to the difficulty 
in identifying disparate malicious behaviors of malware 
from the network traffic, TrafficAV performs a multi-level 
network traffic analysis, gathering as many features of 
network  traffic  as  necessary.  In an evaluation with 8,312 
benign apps and 5,560 malware samples, TCP flow 
detection model and HTTP detection model all perform 
well and achieve detection rates of 98.16% and 99.65%, 
respectively. In addition, for the benefit of user, TrafficAV 
not only displays the final detection results, but also 
analyzes the behind-the- curtain reason of malicious results. 
This allows users to further investigate each feature’s 
contribution in the final result. 

I. INTRODUCTION 

By the end of 2018, the number of smart phones is likely to 

be exceeding the number of human beings, and by 2019 there 

could be 10 billion smart phones around the world [1]. As for 

the mobile operation system, Android operation system 

occupies a top market share. However, the uprising of the 

Android system is greatly impaired by the prevalent Android 

malware. It is reported that 90% of the 126 apps tested faced at 

least two vital security vulnerabilities [2]. This frightening 

statistic reveals the urgency on enforcing mobile app security. 

Malicious apps utilize multiple methods to evade the ex- isting 

detection mechanisms provided by Android operating system 

or existing anti-virus software. These evasion methods include 

dynamic execution, code obfuscation, repackaging or 

encryption [3]. Sophisticated malware developers implement 

powerful encryption or obfuscation techniques to make their 

malicious activities concealed within the huge amount of 

network traffic. However, the network behaviors of malware 

can still present non-trivial anomalies that can be identified by 

advanced detectors, which provides us with a keen insight in 

malware detection. 

 

We propose TrafficAV, an effective and explainable malware 

identification and classification method. TrafficAV exploits 

network traffic to detect mobile malware, since almost all 

malicious behaviors of malware are accomplished through the 

network interface. TrafficAV employs a traffic mirroring tech- 

nology to collect network traffic generated by mobile apps, and 

the generated network traffic is transmitted to a server for data 

analysis. On the server side, TrafficAV gathers traffic features, 

and then uses detection models based on machine learning to 

detect whether the app is malicious or not. For the benefit of 

user, TrafficAV adds another meaningful functionality that not 

only displays the final detection results, but also analyzes the 

reason behind these malicious observations. 

There are two detection models in TrafficAV, namely HTTP 

detection model and TCP flow detection model. We handle 

HTTP traffic because HTTP protocol is the most preferred 

protocol for the majority of mobile apps. HTTP packets carry 

plenty of important information to classify network traffic. 

However, it becomes difficult to get valuable information from 

HTTP traffic when the HTTP traffic generated by mobile apps 

is encrypted. So we have designed TCP flow detection model 

to compensate for the lack of HTTP model. We choose to 

analyze TCP, because TCP is one of the most popular transport 

layer protocols. 

In this paper, we make the following contributions to detect 

Android malware: 

Network traffic based effective mobile malware de- 

tection. Our experimental results show that combining 

network traffic features with machine learning algo- 

rithms can effectively identify malicious behavior. 

Multi-level detection. Multiple levels of network traffic 

features are analyzed and the final results prove that both 

HTTP packet (detection rate of 99.65%)and TCP flow 

(detection rate of 98.16%) can effectively identify 

malware. 

User-friendly result explanation. For the benefit of 

user, TrafficAV shows detection results and simultane- 

ously creates a scoring mechanism to give the reasons for 

making such decision. 

The rest of this paper is organized as follows: Related work 

is introduced in Section II. Section III introduces the method- 

ology of TrafficAV in detail. The evaluation of TrafficAV is 

• 

• 

• 
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Fig. 1: Schematic depiction of the analysis steps performed by TrafficAV 

 
 

introduced in section IV and section VI concludes the paper. 

II. RELATED WORK 

Many security mechanisms have been proposed to detect 

malicious Android apps and to protect targets from being 

attacked. Most of the proposed mechanisms are to analyze the 

app’s key security elements such as permission [4], sensitive 

API calling or critical code segments in the source code [5]. 

However, static analysis falls short in detecting transformation 

attacks. [6] describes the development trend of malware and 

some current detection methods. 

In fact, by analyzing network traffic we can uncover the 

disclosure of sensitive information, the classification of net- 

work behavior, or automatic malware detection. R. Perdisci   et 

al. classify malware according to the similarities in URLs 

extracted from malware’s HTTP requests [7]. Nizar Kheir 

presents a new technique to clas- sify malware user-agent 

anomalies in [9] because user-agent anomalies are prevalent in 

malware HTTP traffic. Another technique presented in [10] 

generates state signatures by a long period of traffic 

observation. 

These studies we mentioned above involve many aspects of 

malicious traffic analysis. Our approach is different from the 

above approaches in the following aspects. Firstly, Network 

traffic generated by mobile app is mirrored from the wireless 

access point to the server for data analysis. All data analysis and 

malware detection are performed on the server side, which does 

not consume any resources on mobile devices. Secondly, The  

proposed  method  combines  multi-level  network traffic 
analysis with machine learning that is capable of identifying 

 

cluding foundation platform, traffic generator, traffic collector 

and network proxy/firewall respectively. Foundation platform 

is built based on Android Virtual Device (AVD), while the 

function of traffic generator is to install and activate malware 

samples to generate network traffic automatically. A traffic 

collector is designed to collect inbound and outbound network 

traffic with tcpdump tool, and traffic mirror technology is 

utilized to mirror traffic to a server. The attack behavior is 

carefully monitored and controlled by proxy/firewall. By this 

traffic collection platform, collected traffic will be mirrored to 

the server to be analyzed. 

B. Feature Extraction 

During the feature extraction, all traffic files are processed to 

automatically generate feature sets. Two programs written by 

Python language are used to extract features of HTTP request 

packets and TCP flows. 

1) Flow feature set: Six selected features  on  TCP  flow are 

showed in Table I. The reason for selecting uploading bytes and 

downloading bytes is that for benign apps, generally speaking, 

the size of a request packet is usually small. While the returning 

data is usually a picture or web page or video, so the packets 

are typically large. But for some Trojans’ traffic, an opposite 

behavior can be observed. 

TABLE I: Features extracted from TCP flow 
 

   Id     Feature Description  
1 upBytes Uploading bytes(client->server) 

2 downBytes Downloading bytes(server->client) 
3 upPckNum Total uploading packet number in  

a session(client->server) 
4 downPckNum Total downloading packet number 

Android malware with high accuracy. Moreover, TrafficAV not 

only displays the final detection results, but also analyzes the 
5 averageUpPckBytes 

in a session(server->client) 
Average bytes of uploading 
packets(client->server) 

behind-the-curtain reason of malicious result. 

III. METHODOLOGY 

In order to detect Android malware, we propose TrafficAV 

method. Through the analysis of network traffic, TrafficAV can 

discover malicious network behavior. This process is illustrated 

in Figure 1. 

A. Traffic Collection 

In order to collect malware traffic traces in a real network 

environment, an active traffic generation and collection platfor- 

m is utilized [11]. The platform is composed of four parts, in- 

6 averageDownPckBytes Average bytes of downloading 

  packets(server->client)  

 
We select uploading packet number, downloading packet 

number, average bytes on one uploading packet and one 

downloading packet. Benign apps will try to make every packet 

carry more data, so the packet number  is small,  but the amount 

of data in each packet is large. As for Trojans apps, the data 

they interact every time is less, but there will  be a lot of 

interactions. 

In addition, there are a lot of similarities of TCP flow in every 

malware family. For example, we carefully observe three 
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features (uploading bytes, downloading bytes, packets number 

in a session) of every TCP flow in FakeDoc family, FakeRun 

family, Iconosys family and Imlog family. The samples of each 

family are clustered into a group which means that these three 

features of the samples in each family share a lot of similarities. 

 

POST /v2/svc/android/ 

 a2.do?md5=f18f2a225710e45039e9ee526  

 a27a29&len=368&t=1&appsec=com.keji.d  

 anti646&sv=1 HTTP/1.1 

Content-Length: 368 

Host: dev.adtouchnetwork.net 

Connection: Keep-Alive 

 

POST /v2/svc/android/ 

 a2.do?md5=2b2626815a5e927eb5e5ca4c  

 4f5b58&len=368&t=1&appsec=com.keji.d  

 anti656&sv=1 HTTP/1.1 

Content-Length: 368 

Host: dev.adtouchnetwork.net 

Connection: Keep-Alive 

2) HTTP request feature set: TrafficAV focus on HTTP 

packet because HTTP is the predominant protocol adopted by 

most mobile apps. TrafficAV leverages metadata information in 

HTTP request header to create HTTP request feature set. Four 

features extracted from HTTP request header are shown in 

Table II. 

TABLE II: Features extracted from HTTP request header 
 

   Id Feature Description  

1 Host This field specifics to the Internet host 
and port number of the requested re- 
source. 

2 Request-Uri The URI is from the request source. 
3 Request-Method The method from HTTP indicates the 

action to be performed on the identified 
resource. 

4 User-Agent This field contains information about 
  the user agent originating the request.  

 
Host: Using Host field in the HTTP request message to 

identify malicious app is a very effective method. Because     if 

there is a communication between app and malicious Host, we 

can determine that the application is malware or suspicious app. 

However, classifying this malware and its family by solely 

relying on Host field is not sufficient. Because a malicious Host 

can possibly associate with a collection of different mal- wares. 

These malwares may have different malicious behaviors and 

should be assigned to different families. 

In the case that Request-Uri does contain key in its string, the 

keys are the same while the values paired with the keys are 

always different. So we can extract the keys to represent the 

HTTP Request-Uri and ignore the values. Different keys are 

separated with the character “&”. For example, in BaseBridge 

family, two different HTTP Request-Uri generated by two 

malicious apps contain the same keys, as Figure 2 shows. The 

underlined segment in Figure 2 is the Request-Uri. In this case 

we will treat this Request-    Uri string as 

“md5&len&t&appsec&sv”. When the string of Request-Uri 

does not contain key-value pairs, we find that in each family 

the Request-Uri has the invariant part. We can use the invariant 

part to represent the Request-Uri feature. 

Request-Method: In most cases app developers only use the 

GET and POST two request methods. GET method is regarded 

as the most common request method. It is essential to send a 

request to obtain a resource from the server. Resources through 

a set of HTTP headers and rending data (such as html text, 

pictures or videos) are returned to the client. GET request 

Fig. 2: Examples of HTTP request in BaseBridge family 

 

never contains presentation data. POST method is to submit the 

data to the server. This method is also widely used. Almost all 

of the current submission operations are relying on the POST 

method. Analysis of a single request method seems 

meaningless, but when a large number of malware samples  get 

together, we will find that only one request method is generally 

used in a malicious family, such as HTTP requests of all 

samples in Adrd family use GET method and in SMSreg family 

all HTTP requests apply POST method. From this point of view, 

the feature is effective for malware classification. 

User-Agent: User-Agent holds the version information of 

request browser. Some malwares using the User-Agent leaks 

infected node information. For example, “Apache-HttpClient/ 

UNAVAILABLE (java 1.4)” is a malicious User-Agent. This 

User-Agent is a known bot [12]. User-Agent anomalies include 

typos, information leakage, outdated versions, and attack vec- 

tors such as XSS and SQL injection. So User-Agent is also a 

feature we should focus on. 

C. Learning-based Detection 

Machine learning can be used to  automatically  discover the 

rules by analyzing the data, and then the rules can be   used to 

predict unknown data.The classification model is completed 

automatically using labeled data set  with  C4.5  algorithm.  By 

applying the classification model, the classification of unknown 

network traffic can be conducted. The process of detecting one 

unknown app with HTTP detection model is described in 

Figure 3. The tree nodes represent traffic feature’s name (such 

as Host, Request-Uri, Request-Method, User- Agent), and the 

branch represents the feature’s value (such as host1, method1, 

uri2, ua1) associated with the above feature. Leaf nodes 

represent the class. A tuple of  traffic  features from one HTTP 

request message is sent to the detection module as an input. The 

classification starts from the root node and then it walks down 

along the corresponding branch (such as the direction of red 

arrow in Figure 3) according      to the feature tuple (such as the 

input in Figure 3) until it reaches a leaf node (such as Family4 

in Figure 3). Finally,   the leaf node can  be  regarded  as  the  

detection  result  of  the app. In other words, decision tree 

classification model creates a mapping relationship between a 

series of features and categories. According to a feature tuple, 

it can infer which class the app belongs to. 
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In the previous step, we also acquire the feature tuple from 

the TCP flow. Similarly, the flow detection model is obtained 

by training flow feature set using C4.5 decision tree algorithm. 

For the same reason, we can detect unknown apps with a 

trained TCP flow model. The detection process is similar to the 

process that is shown in Figure 3. 

For a better understanding of calculation process, we provide 

the following example. If a malware connects with a benign 

Host and contains an suspicious string in Request-Uri, in 

addition, it uses an malicious User-Agent. A corresponding 

vector U for this HTTP request may looks like this 

0 
 

U  =   1 
 

 

 

M alicious   Host S1 
Suspicious  Request − U ri  S2 

Common Request − M ethod S3 

Suspicious  U ser − Agent S4 

 

 

 

 

 

 

 

 

 

 

 

 

 
Output: Family4 

Fig. 3: The detection process with a trained C4.5 decision tree 

model 

 
D. Result Explanation 

In reality, a good detection system must not only show the 

final detection results, but also should make a reasonable ex- 

planation for the detection results. This will enhance the user’s 

goodwill and confidence to detection system. Specifically, we 

detect apps with machine learning methods. The most common 

shortcomings of machine learning methods is that they are 

black-box method [13]. In TrafficAV we basically resolve the 

problem and extend the detection method based on machine 

learning. It can identify each network feature’s contribution  to 

the result. General detection methods just show the final results 

and user does not know how the decision is made. 

To achieve this goal, we define four sets for each feature 

extracted from malicious HTTP request. S1 set saves the values 

of all Host appearing in malicious HTTP request; S2 represents 

the keys or unchanged part in Request-Uri; S3 is Request-

Method set; all User-Agent strings are stored in S4. We define 

a feature vector where each feature is either 0 or 

1. Every specific HTTP request feature tuple will be mapped 

to feature vector. The mapping relationship is as follows. 

U  = 
1 If the ith feature exists in Si 

0 Otherwise 

The importance of every feature in the detection model is 

different, so each feature should have different weight. We take 

the gain information as the corresponding weight. 

With this function F (x), we can calculate the score for each 

HTTP request, where x represents an  HTTP  request. The 

higher the score, TrafficAV has the more confidence in 

believing that this HTTP request is malicious. After getting 

malware’s malicious score, we display each  feature  which has 

a contribution to the malicious result. To accomplish this goal, 

we have designed a sentence template to automatically generate 

description for each feature set. Table III shows the sentence 

template. 

TABLE III: Sentence templates for result explanation 
 

   Set Feature Explanation  

S1 Host APP connects with the malicious Host:%s 
S2 Request-Uri APP contains suspicious Request-Uri:%s 
S3 Request-Method Most common Request-Method with the Host: %s 

   S4 User-Agent APP applies suspicious User-Agent:%s  

 
 

IV. EVALUATION 

In this section, we begin to evaluate the performance of 

TrafficAV. In practice, we evaluate it from the following four 

aspects. 

A. Data Sets 

1) APP data sets: Our malicious apps are from Drebin 

project [14], 5560 malicious apps are real malware samples. 

Our benign apps are downloaded from multiple popular app 

markets by app crawler. The initial benign samples are more 

than 10000. Each app downloaded from app market is sent to 

VirusTotal [15] to be tested. The app is added to our benign app 

set when the test result shows benign. Eventually, we get a 

benign app set of 8312 samples. 

2) Traffic data sets: Android traffic data is collected with an 

automatic mobile traffic collection platform [11]. We get 

500.4MB network traffic data generated by malware samples, 

and then extract 18.1MB malicious behavior traffic from it 

according to the malicious destination IP or domain name [15]. 

In the same way, we obtain 2.15GB mobile traffic data 

generated by benign apps. It takes more than two months for us 

1 

Input: host1 , method1 , uri2 , ua1 

Host 
 

host1 host2 

 
Request- 

Method  

  

Detection model   

   

Benign  
 

ua1 ua2 

  

http://www.ijsdr.org/


ISSN: 2455-2631                              © June 2019 IJSDR | Volume 4, Issue 6 

IJSDR1906073 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 417 

 

to complete network traffic data collection. In order to improve 

the accuracy of the trained models, we only extract features 

from 18.1MB pure malicious traffic and 2.15GB benign traffic 

to produce training set and test set. 

3) Training set and test set: Collected traffic is processed 

to extract valuable features on the server side. Ultimately 10225 

feature tuples of HTTP request (benign HTTP requests 

included) and 24437 feature tuples of TCP flow (benign TCP 

flows included) are extracted. These feature tuples are used to 
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train the detection model and test the detection performance  of 

TrafficAV. Table IV shows the number of HTTP feature tuples 

and TCP flow feature tuples in every malware family. In this 

table, N 1 represents the number of flow feature tuples and N 

2 indicates the number of HTTP feature tuples in each family. 

TABLE IV: The number of traffic feature tuples in each 

malware family 

 
Id Family N1 N2 Id Family N1 N2 
A plankton 1753 2224 J Hamob 42 75 
B DroidKungFu 585 373 K Iconosys 39 40 
C BaseBridge 368 862 L SMSreg 21 25 
D FakeDoc 305 469 M Geinimi 18 20 
E Gappusin 180 199 N Adrd 17 16 
F FakeRun 139 147 O Glodream 16 16 
G MobileTx 126 126 P Ginmaster 13 15 

H 
I 

Opfake 
FakeInstall 

124 
102 

124 
142 

Q Imlog 12 12 

 
B. Detection Performance on Malicious Traffic 

We split feature set into a training set (67 percent of traffic 

feature data) and a test set (33 percent  of  traffic  feature  data) 

randomly. Detection models and related parameters are 

determined by the training set. Test set is only used to evaluate 

the detection performance of TrafficAV. In order to eliminate 

the influence of contingency factors, we let this process  repeat 

10 times and the average result as the final detection result. We 

evaluate the detection performance of TrafficAV on every 

specific malware family. The detection performance of 

TrafficAV for each family’s traffic is illustrated in Figure 4. 

TCP flow model has the best performance on the FakeDoc 

family (D) with the accuracy rate up to 99.3% and the worst 

performance is on Ginmaster family (P) with accurate rate is 

only 25.0%. In Gappusin family (E), Ginmaster family (P)  and 

Hamob family (J) flow  detection model perform badly.  In 

general, the performance of HTTP model on every family is 

quite well. On FakeDoc family (D), FakeRun family (F)  and 

other families the accuracy rates reach 100%. But we should 

also note a special case that on SMSreg family (L),   the 

detection rate of HTTP model is 0 and detection rate of flow 

model is 60%. From this point, we can conclude that flow 

detection model can be used as a supplement of HTTP detection 

model in some cases. 

C. Detection Performance on Malicious App 

1) Detection rates of two detection models : Because one 

app may generate more than one TCP flow and multiple HTTP 

Malware Families 
 

Fig. 4: Detection performance of each malware family 

 

request packets, the detection rate of malicious traffic will not 

be equal to the detection rate on malicious apps. Furthermore, 

the traffic generated by each malware is the mixture of benign 

traffic and malicious traffic. Therefore, as long as we find some 

malicious traffic in one app, we will regard it as a malware. In 

this way, we calculate the true positive rate (TPR) and false 

positive rate (FPR) of two detection models. Figure 5 shows the 

final result. The detect rate of the flow model reaches 98.16% 

while the FPR is 5.14%. Although it can be used to detect 

malicious apps, it suffers from a high false positive rate. HTTP 

detection model on the other hand performs better than flow 

detection model. The TPR and FPR reach 99.65% and 1.84% 

of HTTP model, respectively. These statistics indicate that the 

accuracy of flow model is slightly lower than that of the HTTP 

model and the FPR was significantly higher than that of the 

HTTP model. 
 

Fig. 5: The TPR and FPR on malware detection 

 
2) Comparison with other AV scanner: In our second exper- 

iment, we compare TrafficAV with other AV scanners. Since 

our malware samples are all from Drebin project [14], the 

comparing results with other scanners are cited from Drebin’s 

experiment result. The comparing results of TrafficAV, Drebin 

and other anti-virus scanners are showed in Table V.  The eight 

popular anti-virus scanners are respectively AntiVir, AVG, 

BitDefender, ClamAV, ESET, F-Secure, Kaspersky and 

McAfee. The detection performance of each scanner is taken 

from a public service VirusTotal [15] which is a website using 

many anti-virus softwares to analyze the security of uploading 

files. 
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TABLE V: Detection rates of TrafficAV, Drebin and other anti-virus scanners 
 

 TrafficAV-Flow TrafficAV-HTTP DREBIN AV1 AV2 AV3 AV4 AV5 AV6 AV7 AV8 

Full dataset 98.16% 99.65% 93.90% 96.41% 93.71% 84.66% 84.54% 78.38% 64.16% 48.50% 48.34% 

 

D. Result Explanation 

Another advantage of TrafficAV is that it can produce a 

detailed explanation for HTTP model’s detection result. 

 

take one known malware from Gappusin family as an example 

to illustrate TrafficAV’s result explanation. The HTTP request 

features extracted from one malware belonging to Gappusin 

family are displayed in Figure 6. Gappusin family is a popular 

malware family and its main functionality is to induce mali- 

cious charges. Malware belonging to this family automatically 

connect with network, order business or download adware 

without user’s knowledge. In Figure 6, we can see that this 

malware connects with the malicious website “app.wapx.cn”. 

Its request method is GET and most malicious apps in Gappusin 

family use GET method for making a request to the server. 

Moreover, its User-Agent is an benign User-Agent, so the 

vector is 0. The dot product (7.289) of weight vector with 

feature vector is the malicious evaluation score of this malware. 

The higher the score is, the more likely this app is a malware. 

In addition, according to this score mechanism, the calculated 

malicious evaluation scores will be ranging from 1.420 to 

8.735. 

V. CONCLUSION 

The increasing number of Android malware brings mobile 

users a elevating security risk, and makes the detection of 

mobile malware a greater challenge. In order to identify 

Android malware, we propose TrafficAV which proves that: by 

combining machine learning algorithm and traffic analysis, we 

can effectively detect malicious traffic and further detect 

malware. The detection rates of TCP flow and HTTP models 

reach 98.16% and 99.65% while the false positive rates are 

5.14% and 1.84%. TrafficAV not only identifies the malicious 

apps, but also provides details about the detection results. In 

addition, TrafficAV completes traffic analysis and detection  on 

the server side, which does not consume resources of mobile 

devices, and does not affect user’s surfing behaviors. 

Although TrafficAV reaches a good performance in detecting 

mobile malware, it is largely limited by the existing malicious 

samples. The number of malware family and malware samples 

are important factors that affect the wide applicability of 

TrafficAV. In addition, due to the limited malicious traffic 

generated by the malware samples is not always malicious, we 

only get 18.1MB malicious traffic data. Small training samples 

has a negative impact on our detection results. So our future 

task is to collect and analyze more malware samples, and to 

continuously improve the detection models of TrafficAV. 
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