
ISSN: 2455-2631 © June 2019 IJSDR | Volume 4, Issue 6

IJSDR1906073 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 413

 An Effective Detection of Mobile Malware Behavior

Using Network Traffic: TrafficAV

Vinisha Malik1, Sandeep kumar Goyal2

Computer Science Engineering Department,

MMU, Mullana , Ambala , India

Abstract: Android has become the most popular mobile
plat- form due to its openness and flexibility. Meanwhile,
it has also become the main target of massive mobile
malware. This phenomenon drives a pressing need for
malware detection. In this paper, we propose TrafficAV,
which is an effective and explainable detection of mobile
malware behavior using network traffic. Network traffic
generated by mobile app is mirrored from the wireless
access point to the server for data analysis. All data analysis
and malware detection are performed on the server side,
which consumes minimum resources on mobile devices
without affecting the user experience. Due to the difficulty
in identifying disparate malicious behaviors of malware
from the network traffic, TrafficAV performs a multi-level
network traffic analysis, gathering as many features of
network traffic as necessary. In an evaluation with 8,312
benign apps and 5,560 malware samples, TCP flow
detection model and HTTP detection model all perform
well and achieve detection rates of 98.16% and 99.65%,
respectively. In addition, for the benefit of user, TrafficAV
not only displays the final detection results, but also
analyzes the behind-the- curtain reason of malicious results.
This allows users to further investigate each feature’s
contribution in the final result.

I. INTRODUCTION

By the end of 2018, the number of smart phones is likely to

be exceeding the number of human beings, and by 2019 there

could be 10 billion smart phones around the world [1]. As for

the mobile operation system, Android operation system

occupies a top market share. However, the uprising of the

Android system is greatly impaired by the prevalent Android

malware. It is reported that 90% of the 126 apps tested faced at

least two vital security vulnerabilities [2]. This frightening

statistic reveals the urgency on enforcing mobile app security.

Malicious apps utilize multiple methods to evade the ex- isting

detection mechanisms provided by Android operating system

or existing anti-virus software. These evasion methods include

dynamic execution, code obfuscation, repackaging or

encryption [3]. Sophisticated malware developers implement

powerful encryption or obfuscation techniques to make their

malicious activities concealed within the huge amount of

network traffic. However, the network behaviors of malware

can still present non-trivial anomalies that can be identified by

advanced detectors, which provides us with a keen insight in

malware detection.

We propose TrafficAV, an effective and explainable malware

identification and classification method. TrafficAV exploits

network traffic to detect mobile malware, since almost all

malicious behaviors of malware are accomplished through the

network interface. TrafficAV employs a traffic mirroring tech-

nology to collect network traffic generated by mobile apps, and

the generated network traffic is transmitted to a server for data

analysis. On the server side, TrafficAV gathers traffic features,

and then uses detection models based on machine learning to

detect whether the app is malicious or not. For the benefit of

user, TrafficAV adds another meaningful functionality that not

only displays the final detection results, but also analyzes the

reason behind these malicious observations.

There are two detection models in TrafficAV, namely HTTP

detection model and TCP flow detection model. We handle

HTTP traffic because HTTP protocol is the most preferred

protocol for the majority of mobile apps. HTTP packets carry

plenty of important information to classify network traffic.

However, it becomes difficult to get valuable information from

HTTP traffic when the HTTP traffic generated by mobile apps

is encrypted. So we have designed TCP flow detection model

to compensate for the lack of HTTP model. We choose to

analyze TCP, because TCP is one of the most popular transport

layer protocols.

In this paper, we make the following contributions to detect

Android malware:

Network traffic based effective mobile malware de-

tection. Our experimental results show that combining

network traffic features with machine learning algo-

rithms can effectively identify malicious behavior.

Multi-level detection. Multiple levels of network traffic

features are analyzed and the final results prove that both

HTTP packet (detection rate of 99.65%)and TCP flow

(detection rate of 98.16%) can effectively identify

malware.

User-friendly result explanation. For the benefit of

user, TrafficAV shows detection results and simultane-

ously creates a scoring mechanism to give the reasons for

making such decision.

The rest of this paper is organized as follows: Related work

is introduced in Section II. Section III introduces the method-

ology of TrafficAV in detail. The evaluation of TrafficAV is

•

•

•

http://www.ijsdr.org/

ISSN: 2455-2631 © June 2019 IJSDR | Volume 4, Issue 6

IJSDR1906073 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 414

Android app

(apk)

HTTP Request Features

TCP Flow Features

(a) Traffic Collection (b) Feature Extraction

(c) Learning-based Detection (d) Result Explanation

Fig. 1: Schematic depiction of the analysis steps performed by TrafficAV

introduced in section IV and section VI concludes the paper.

II. RELATED WORK

Many security mechanisms have been proposed to detect

malicious Android apps and to protect targets from being

attacked. Most of the proposed mechanisms are to analyze the

app’s key security elements such as permission [4], sensitive

API calling or critical code segments in the source code [5].

However, static analysis falls short in detecting transformation

attacks. [6] describes the development trend of malware and

some current detection methods.

In fact, by analyzing network traffic we can uncover the

disclosure of sensitive information, the classification of net-

work behavior, or automatic malware detection. R. Perdisci et

al. classify malware according to the similarities in URLs

extracted from malware’s HTTP requests [7]. Nizar Kheir

presents a new technique to clas- sify malware user-agent

anomalies in [9] because user-agent anomalies are prevalent in

malware HTTP traffic. Another technique presented in [10]

generates state signatures by a long period of traffic

observation.

These studies we mentioned above involve many aspects of

malicious traffic analysis. Our approach is different from the

above approaches in the following aspects. Firstly, Network

traffic generated by mobile app is mirrored from the wireless

access point to the server for data analysis. All data analysis and

malware detection are performed on the server side, which does

not consume any resources on mobile devices. Secondly, The

proposed method combines multi-level network traffic
analysis with machine learning that is capable of identifying

cluding foundation platform, traffic generator, traffic collector

and network proxy/firewall respectively. Foundation platform

is built based on Android Virtual Device (AVD), while the

function of traffic generator is to install and activate malware

samples to generate network traffic automatically. A traffic

collector is designed to collect inbound and outbound network

traffic with tcpdump tool, and traffic mirror technology is

utilized to mirror traffic to a server. The attack behavior is

carefully monitored and controlled by proxy/firewall. By this

traffic collection platform, collected traffic will be mirrored to

the server to be analyzed.

B. Feature Extraction

During the feature extraction, all traffic files are processed to

automatically generate feature sets. Two programs written by

Python language are used to extract features of HTTP request

packets and TCP flows.

1) Flow feature set: Six selected features on TCP flow are

showed in Table I. The reason for selecting uploading bytes and

downloading bytes is that for benign apps, generally speaking,

the size of a request packet is usually small. While the returning

data is usually a picture or web page or video, so the packets

are typically large. But for some Trojans’ traffic, an opposite

behavior can be observed.

TABLE I: Features extracted from TCP flow

 Id Feature Description
1 upBytes Uploading bytes(client->server)

2 downBytes Downloading bytes(server->client)
3 upPckNum Total uploading packet number in

a session(client->server)
4 downPckNum Total downloading packet number

Android malware with high accuracy. Moreover, TrafficAV not

only displays the final detection results, but also analyzes the
5 averageUpPckBytes

in a session(server->client)
Average bytes of uploading
packets(client->server)

behind-the-curtain reason of malicious result.

III. METHODOLOGY

In order to detect Android malware, we propose TrafficAV

method. Through the analysis of network traffic, TrafficAV can

discover malicious network behavior. This process is illustrated

in Figure 1.

A. Traffic Collection

In order to collect malware traffic traces in a real network

environment, an active traffic generation and collection platfor-

m is utilized [11]. The platform is composed of four parts, in-

6 averageDownPckBytes Average bytes of downloading

 packets(server->client)

We select uploading packet number, downloading packet

number, average bytes on one uploading packet and one

downloading packet. Benign apps will try to make every packet

carry more data, so the packet number is small, but the amount

of data in each packet is large. As for Trojans apps, the data

they interact every time is less, but there will be a lot of

interactions.

In addition, there are a lot of similarities of TCP flow in every

malware family. For example, we carefully observe three

Result

http://www.ijsdr.org/

ISSN: 2455-2631 © June 2019 IJSDR | Volume 4, Issue 6

IJSDR1906073 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 415

features (uploading bytes, downloading bytes, packets number

in a session) of every TCP flow in FakeDoc family, FakeRun

family, Iconosys family and Imlog family. The samples of each

family are clustered into a group which means that these three

features of the samples in each family share a lot of similarities.

POST /v2/svc/android/

 a2.do?md5=f18f2a225710e45039e9ee526

 a27a29&len=368&t=1&appsec=com.keji.d

 anti646&sv=1 HTTP/1.1

Content-Length: 368

Host: dev.adtouchnetwork.net

Connection: Keep-Alive

POST /v2/svc/android/

 a2.do?md5=2b2626815a5e927eb5e5ca4c

 4f5b58&len=368&t=1&appsec=com.keji.d

 anti656&sv=1 HTTP/1.1

Content-Length: 368

Host: dev.adtouchnetwork.net

Connection: Keep-Alive

2) HTTP request feature set: TrafficAV focus on HTTP

packet because HTTP is the predominant protocol adopted by

most mobile apps. TrafficAV leverages metadata information in

HTTP request header to create HTTP request feature set. Four

features extracted from HTTP request header are shown in

Table II.

TABLE II: Features extracted from HTTP request header

 Id Feature Description

1 Host This field specifics to the Internet host
and port number of the requested re-
source.

2 Request-Uri The URI is from the request source.
3 Request-Method The method from HTTP indicates the

action to be performed on the identified
resource.

4 User-Agent This field contains information about
 the user agent originating the request.

Host: Using Host field in the HTTP request message to

identify malicious app is a very effective method. Because if

there is a communication between app and malicious Host, we

can determine that the application is malware or suspicious app.

However, classifying this malware and its family by solely

relying on Host field is not sufficient. Because a malicious Host

can possibly associate with a collection of different mal- wares.

These malwares may have different malicious behaviors and

should be assigned to different families.

In the case that Request-Uri does contain key in its string, the

keys are the same while the values paired with the keys are

always different. So we can extract the keys to represent the

HTTP Request-Uri and ignore the values. Different keys are

separated with the character “&”. For example, in BaseBridge

family, two different HTTP Request-Uri generated by two

malicious apps contain the same keys, as Figure 2 shows. The

underlined segment in Figure 2 is the Request-Uri. In this case

we will treat this Request- Uri string as

“md5&len&t&appsec&sv”. When the string of Request-Uri

does not contain key-value pairs, we find that in each family

the Request-Uri has the invariant part. We can use the invariant

part to represent the Request-Uri feature.

Request-Method: In most cases app developers only use the

GET and POST two request methods. GET method is regarded

as the most common request method. It is essential to send a

request to obtain a resource from the server. Resources through

a set of HTTP headers and rending data (such as html text,

pictures or videos) are returned to the client. GET request

Fig. 2: Examples of HTTP request in BaseBridge family

never contains presentation data. POST method is to submit the

data to the server. This method is also widely used. Almost all

of the current submission operations are relying on the POST

method. Analysis of a single request method seems

meaningless, but when a large number of malware samples get

together, we will find that only one request method is generally

used in a malicious family, such as HTTP requests of all

samples in Adrd family use GET method and in SMSreg family

all HTTP requests apply POST method. From this point of view,

the feature is effective for malware classification.

User-Agent: User-Agent holds the version information of

request browser. Some malwares using the User-Agent leaks

infected node information. For example, “Apache-HttpClient/

UNAVAILABLE (java 1.4)” is a malicious User-Agent. This

User-Agent is a known bot [12]. User-Agent anomalies include

typos, information leakage, outdated versions, and attack vec-

tors such as XSS and SQL injection. So User-Agent is also a

feature we should focus on.

C. Learning-based Detection

Machine learning can be used to automatically discover the

rules by analyzing the data, and then the rules can be used to

predict unknown data.The classification model is completed

automatically using labeled data set with C4.5 algorithm. By

applying the classification model, the classification of unknown

network traffic can be conducted. The process of detecting one

unknown app with HTTP detection model is described in

Figure 3. The tree nodes represent traffic feature’s name (such

as Host, Request-Uri, Request-Method, User- Agent), and the

branch represents the feature’s value (such as host1, method1,

uri2, ua1) associated with the above feature. Leaf nodes

represent the class. A tuple of traffic features from one HTTP

request message is sent to the detection module as an input. The

classification starts from the root node and then it walks down

along the corresponding branch (such as the direction of red

arrow in Figure 3) according to the feature tuple (such as the

input in Figure 3) until it reaches a leaf node (such as Family4

in Figure 3). Finally, the leaf node can be regarded as the

detection result of the app. In other words, decision tree

classification model creates a mapping relationship between a

series of features and categories. According to a feature tuple,

it can infer which class the app belongs to.

http://www.ijsdr.org/

ISSN: 2455-2631 © June 2019 IJSDR | Volume 4, Issue 6

IJSDR1906073 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 416

1

.

i

In the previous step, we also acquire the feature tuple from

the TCP flow. Similarly, the flow detection model is obtained

by training flow feature set using C4.5 decision tree algorithm.

For the same reason, we can detect unknown apps with a

trained TCP flow model. The detection process is similar to the

process that is shown in Figure 3.

For a better understanding of calculation process, we provide

the following example. If a malware connects with a benign

Host and contains an suspicious string in Request-Uri, in

addition, it uses an malicious User-Agent. A corresponding

vector U for this HTTP request may looks like this

0

U = 1

M alicious Host S1
Suspicious Request − U ri S2

Common Request − M ethod S3

Suspicious U ser − Agent S4

Output: Family4

Fig. 3: The detection process with a trained C4.5 decision tree

model

D. Result Explanation

In reality, a good detection system must not only show the

final detection results, but also should make a reasonable ex-

planation for the detection results. This will enhance the user’s

goodwill and confidence to detection system. Specifically, we

detect apps with machine learning methods. The most common

shortcomings of machine learning methods is that they are

black-box method [13]. In TrafficAV we basically resolve the

problem and extend the detection method based on machine

learning. It can identify each network feature’s contribution to

the result. General detection methods just show the final results

and user does not know how the decision is made.

To achieve this goal, we define four sets for each feature

extracted from malicious HTTP request. S1 set saves the values

of all Host appearing in malicious HTTP request; S2 represents

the keys or unchanged part in Request-Uri; S3 is Request-

Method set; all User-Agent strings are stored in S4. We define

a feature vector where each feature is either 0 or

1. Every specific HTTP request feature tuple will be mapped

to feature vector. The mapping relationship is as follows.

U =
1 If the ith feature exists in Si

0 Otherwise

The importance of every feature in the detection model is

different, so each feature should have different weight. We take

the gain information as the corresponding weight.

With this function F (x), we can calculate the score for each

HTTP request, where x represents an HTTP request. The

higher the score, TrafficAV has the more confidence in

believing that this HTTP request is malicious. After getting

malware’s malicious score, we display each feature which has

a contribution to the malicious result. To accomplish this goal,

we have designed a sentence template to automatically generate

description for each feature set. Table III shows the sentence

template.

TABLE III: Sentence templates for result explanation

 Set Feature Explanation

S1 Host APP connects with the malicious Host:%s
S2 Request-Uri APP contains suspicious Request-Uri:%s
S3 Request-Method Most common Request-Method with the Host: %s

 S4 User-Agent APP applies suspicious User-Agent:%s

IV. EVALUATION

In this section, we begin to evaluate the performance of

TrafficAV. In practice, we evaluate it from the following four

aspects.

A. Data Sets

1) APP data sets: Our malicious apps are from Drebin

project [14], 5560 malicious apps are real malware samples.

Our benign apps are downloaded from multiple popular app

markets by app crawler. The initial benign samples are more

than 10000. Each app downloaded from app market is sent to

VirusTotal [15] to be tested. The app is added to our benign app

set when the test result shows benign. Eventually, we get a

benign app set of 8312 samples.

2) Traffic data sets: Android traffic data is collected with an

automatic mobile traffic collection platform [11]. We get

500.4MB network traffic data generated by malware samples,

and then extract 18.1MB malicious behavior traffic from it

according to the malicious destination IP or domain name [15].

In the same way, we obtain 2.15GB mobile traffic data

generated by benign apps. It takes more than two months for us

1

Input: host1 , method1 , uri2 , ua1

Host

host1 host2

Request-

Method

Detection model

Benign

ua1 ua2

http://www.ijsdr.org/

ISSN: 2455-2631 © June 2019 IJSDR | Volume 4, Issue 6

IJSDR1906073 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 417

to complete network traffic data collection. In order to improve

the accuracy of the trained models, we only extract features

from 18.1MB pure malicious traffic and 2.15GB benign traffic

to produce training set and test set.

3) Training set and test set: Collected traffic is processed

to extract valuable features on the server side. Ultimately 10225

feature tuples of HTTP request (benign HTTP requests

included) and 24437 feature tuples of TCP flow (benign TCP

flows included) are extracted. These feature tuples are used to

100

80

60

40

20

0

A B C D E F G H I J

K L M N

O P Q

train the detection model and test the detection performance of

TrafficAV. Table IV shows the number of HTTP feature tuples

and TCP flow feature tuples in every malware family. In this

table, N 1 represents the number of flow feature tuples and N

2 indicates the number of HTTP feature tuples in each family.

TABLE IV: The number of traffic feature tuples in each

malware family

Id Family N1 N2 Id Family N1 N2
A plankton 1753 2224 J Hamob 42 75
B DroidKungFu 585 373 K Iconosys 39 40
C BaseBridge 368 862 L SMSreg 21 25
D FakeDoc 305 469 M Geinimi 18 20
E Gappusin 180 199 N Adrd 17 16
F FakeRun 139 147 O Glodream 16 16
G MobileTx 126 126 P Ginmaster 13 15

H
I

Opfake
FakeInstall

124
102

124
142

Q Imlog 12 12

B. Detection Performance on Malicious Traffic

We split feature set into a training set (67 percent of traffic

feature data) and a test set (33 percent of traffic feature data)

randomly. Detection models and related parameters are

determined by the training set. Test set is only used to evaluate

the detection performance of TrafficAV. In order to eliminate

the influence of contingency factors, we let this process repeat

10 times and the average result as the final detection result. We

evaluate the detection performance of TrafficAV on every

specific malware family. The detection performance of

TrafficAV for each family’s traffic is illustrated in Figure 4.

TCP flow model has the best performance on the FakeDoc

family (D) with the accuracy rate up to 99.3% and the worst

performance is on Ginmaster family (P) with accurate rate is

only 25.0%. In Gappusin family (E), Ginmaster family (P) and

Hamob family (J) flow detection model perform badly. In

general, the performance of HTTP model on every family is

quite well. On FakeDoc family (D), FakeRun family (F) and

other families the accuracy rates reach 100%. But we should

also note a special case that on SMSreg family (L), the

detection rate of HTTP model is 0 and detection rate of flow

model is 60%. From this point, we can conclude that flow

detection model can be used as a supplement of HTTP detection

model in some cases.

C. Detection Performance on Malicious App

1) Detection rates of two detection models : Because one

app may generate more than one TCP flow and multiple HTTP

Malware Families

Fig. 4: Detection performance of each malware family

request packets, the detection rate of malicious traffic will not

be equal to the detection rate on malicious apps. Furthermore,

the traffic generated by each malware is the mixture of benign

traffic and malicious traffic. Therefore, as long as we find some

malicious traffic in one app, we will regard it as a malware. In

this way, we calculate the true positive rate (TPR) and false

positive rate (FPR) of two detection models. Figure 5 shows the

final result. The detect rate of the flow model reaches 98.16%

while the FPR is 5.14%. Although it can be used to detect

malicious apps, it suffers from a high false positive rate. HTTP

detection model on the other hand performs better than flow

detection model. The TPR and FPR reach 99.65% and 1.84%

of HTTP model, respectively. These statistics indicate that the

accuracy of flow model is slightly lower than that of the HTTP

model and the FPR was significantly higher than that of the

HTTP model.

Fig. 5: The TPR and FPR on malware detection

2) Comparison with other AV scanner: In our second exper-

iment, we compare TrafficAV with other AV scanners. Since

our malware samples are all from Drebin project [14], the

comparing results with other scanners are cited from Drebin’s

experiment result. The comparing results of TrafficAV, Drebin

and other anti-virus scanners are showed in Table V. The eight

popular anti-virus scanners are respectively AntiVir, AVG,

BitDefender, ClamAV, ESET, F-Secure, Kaspersky and

McAfee. The detection performance of each scanner is taken

from a public service VirusTotal [15] which is a website using

many anti-virus softwares to analyze the security of uploading

files.

D
e
te

ct
io

n
 R

a
te

Fl

H

ow D

TTP D

etectio

etecti

n

on

http://www.ijsdr.org/

ISSN: 2455-2631 © June 2019 IJSDR | Volume 4, Issue 6

IJSDR1906073 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 418

TABLE V: Detection rates of TrafficAV, Drebin and other anti-virus scanners

 TrafficAV-Flow TrafficAV-HTTP DREBIN AV1 AV2 AV3 AV4 AV5 AV6 AV7 AV8

Full dataset 98.16% 99.65% 93.90% 96.41% 93.71% 84.66% 84.54% 78.38% 64.16% 48.50% 48.34%

D. Result Explanation

Another advantage of TrafficAV is that it can produce a

detailed explanation for HTTP model’s detection result.

take one known malware from Gappusin family as an example

to illustrate TrafficAV’s result explanation. The HTTP request

features extracted from one malware belonging to Gappusin

family are displayed in Figure 6. Gappusin family is a popular

malware family and its main functionality is to induce mali-

cious charges. Malware belonging to this family automatically

connect with network, order business or download adware

without user’s knowledge. In Figure 6, we can see that this

malware connects with the malicious website “app.wapx.cn”.

Its request method is GET and most malicious apps in Gappusin

family use GET method for making a request to the server.

Moreover, its User-Agent is an benign User-Agent, so the

vector is 0. The dot product (7.289) of weight vector with

feature vector is the malicious evaluation score of this malware.

The higher the score is, the more likely this app is a malware.

In addition, according to this score mechanism, the calculated

malicious evaluation scores will be ranging from 1.420 to

8.735.

V. CONCLUSION

The increasing number of Android malware brings mobile

users a elevating security risk, and makes the detection of

mobile malware a greater challenge. In order to identify

Android malware, we propose TrafficAV which proves that: by

combining machine learning algorithm and traffic analysis, we

can effectively detect malicious traffic and further detect

malware. The detection rates of TCP flow and HTTP models

reach 98.16% and 99.65% while the false positive rates are

5.14% and 1.84%. TrafficAV not only identifies the malicious

apps, but also provides details about the detection results. In

addition, TrafficAV completes traffic analysis and detection on

the server side, which does not consume resources of mobile

devices, and does not affect user’s surfing behaviors.

Although TrafficAV reaches a good performance in detecting

mobile malware, it is largely limited by the existing malicious

samples. The number of malware family and malware samples

are important factors that affect the wide applicability of

TrafficAV. In addition, due to the limited malicious traffic

generated by the malware samples is not always malicious, we

only get 18.1MB malicious traffic data. Small training samples

has a negative impact on our detection results. So our future

task is to collect and analyze more malware samples, and to

continuously improve the detection models of TrafficAV.

REFERENCES

[1] “2015 mobile threat report: The rise of mobile malware,”
https://securityintelligence.com/events/the-current-state-
of-mobile- threats, Tech. Rep., 2015.

[2] “Sophos: Security threat report, 2014,”
http://www.sophos.com/en-
us/medialibrary/PDFs/other/sophossecurity-threat-report-
2014.pdf, Tech. Rep., 2014.

[3] “Android.bgserv,” http://www.symantec.com/security
re- sponse/writeup.jsp? docid=2011-031005-2918-99,
Tech. Rep.

[4] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X.
S. Wang, and
B. Zang, “Vetting undesirable behaviors in android apps
with permission use analysis,” in Proceedings of the 2013
ACM SIGSAC conference on Computer & communications
security. ACM, 2013, pp. 611–622.

[5] X. Wang, K. Sun, Y. Wang, and J. Jing, “Deepdroid:
Dynamically enforcing enterprise policy on android
devices.” in NDSS, 2015.

[6] M. Chandramohan and H. B. K. Tan, “Detection of mobile
malware in the wild,” Computer, vol. 45, no. 9, pp. 0065–
71, 2012.

[7] R. Perdisci, W. Lee, and N. Feamster, “Behavioral
clustering of http- based malware and signature generation
using malicious network traces.” in NSDI, 2010, pp. 391–
404.

[8] C. Krügel, T. Toth, and E. Kirda, “Service specific
anomaly detection for network intrusion detection,” in
Proceedings of the 2002 ACM symposium on Applied
computing. ACM, 2002, pp. 201–208.

[9] N. Kheir, “Analyzing http user agent anomalies for
malware detection,” in Data Privacy Management and
Autonomous Spontaneous Security. Springer, 2013, pp.
187–200.

[10] Z. Chen, H. Han, Q. Yan, B. Yang, L. Peng, L. Zhang,
and J. Li, “A first look at android malware traffic in first
few minutes,” in Trustcom/BigDataSE/ISPA, 2015 IEEE,
vol. 1. IEEE, 2015, pp. 206– 213.

[11] “Bots vs browsers - public bot / user
a- gent database & commentary.” [Online]. Available:
http://www.botsvsbrowsers.com/details/431923/index.ht
ml

[12] R. Sommer and V. Paxson, “Outside the closed world: On
using machine learning for network intrusion detection,” in
Security and Privacy (SP), 2010 IEEE Symposium on.
IEEE, 2010, pp. 305–316.

http://www.ijsdr.org/
http://www.sophos.com/en-
http://www.symantec.com/security
http://www.symantec.com/security
http://www.botsvsbrowsers.com/details/431923/index.html
http://www.botsvsbrowsers.com/details/431923/index.html

ISSN: 2455-2631 © June 2019 IJSDR | Volume 4, Issue 6

IJSDR1906073 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 419

[13] D. Arp, M. Spreitzenbarth, M. Hubner, H.
Gascon, and K. Rieck, “Drebin: Effective and
explainable detection of android malware in
your pocket.” in NDSS, 2014.

[14] Vinisha malik , sandeep kumar goyal , “
Malware detection in smartphones using
network trafiic features”IEEE conference juit
solan 2016.

http://www.ijsdr.org/

