
ISSN: 2455-2631 © April 2018 IJSDR | Volume 3, Issue 4

IJSDR1804053 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 319

Improvised Privacy-Preserving Multi-keyword Top-k

Similarity Search Over Encrypted Data

1
Pooja Kuber Patil,

2
Rupali A. Mangrule

1
ME Student,

2
Assistant Professor

MIT College of Engineering

Abstract: Cloud computing enables individuals and organizations to run large, scalable computing to support large data

applications in the domain, such as healthcare and scientific research. As a result, data owners are involved in outsourcing

their data on cloud servers for data availability. However, data sets such as client files and records in electronic documents

often contain sensitive information, which raises concerns about personal information, if the document is published or

shared with some unreliable third party in the cloud. The most widely used and practical technique for keeping personal

information is encrypting data before outsourcing to a cloud server. This reduces the utility of data and enables

traditional data analysis operators. Fetching documents on k using outdated keywords. In this article, we will investigate

the top-k search queries for multiple keywords for large data encodings to protect privacy, and attempt to identify

effective and secure solutions for this problem. Particularly for privacy concerns about query data, we've created a special

tree-like index structure and designed a randomized search algorithm that makes even the same search query create

routes. Different views on the index can also be maintained. Under the stronger privacy. For query performance

improvement, we have proposed a multi-layered top-k search scheme based on the concept of a partition, which contains a

cluster of indexes based on the tree created for all documents. Finally, we combine these methods together as a powerful

and secure way of identifying similar top-k searches. Our experimental results in real-life data sets show that the

guidelines we offer can be improved. The ability to protect privacy, scalability, and efficiency in query processing is

greatly enhanced by modern methods.

Keywords: Cloud computing, privacy preserving, data encryption, multi-keyword top-k search, trapdoor, cosine

similarity, lucene indexing

Introduction

Cloud computing has become a disruptive trend in the IT

and community industries involving research. Recent

research, such as scalability and pay as you go, has helped

consumers. Clouds can buy powerful computing resources

based on real needs. Cloud users no longer need to worry

about consuming resources on the computer system and

complexity in managing the hardware platform. [1] [2]

Currently, many companies and individuals from large data

applications have outsourced information and deployed their

services to cloud servers for easy data management, data

mining, and query processing. But when companies and

individuals benefit from these advantages in cloud

computing, they need to take into account the privacy of the

information they are hired. Because many in-app sets often

contain sensitive information, such as email, electronic

health records, and financial transaction records, when the

data owner outsources such important information to a

cloud server, it is considered partially reliable. These data

are easily accessible and analyzed. Because analyzing these

data sets may provide insights into key social issues (such as

e-research, health, medical, and government services), data

owners need to be effectively secure with the cloud. Data

encryption is widely used for storing personal information

in a data-sharing scenario, which means mathematical

calculations and algorithms that convert plaintext to cipher

text, which is unreadable for unauthorized people. [3], [4],

and [5] are used to encrypt data before outsourcing to a

cloud server.

However, using these approaches to encrypt data often

entails a tremendous expense in the data utility, which

makes traditional data processing designed for plaintext data

not work well with encrypted data. Keyword-based searches

are operators. The widespread data in databases and

applications, large amounts of data retrieval, and traditional

processing methods cannot be directly applied to encrypted

data. So how to process such queries in encrypted data and

at the same time guarantee data privacy becomes a hot topic

of research. For example, [6], [7], [8] deal with single

keyword searches and results [9], [10], [11], [12], [13]

supports multi-keyword Boolean search. However, single

keyword search is not smart enough to support advanced

search and bold search is unrealistic as it causes high cost of

communication. Recent assignments such as [14], [15], [16]

focus on multi-word search, which is the concept of paying

more in the cloud-based paradigm. But most of these

methods fail to meet high search performance and robust

data integrity at the same time, especially when applied to

large data encoders, resulting in scalable capabilities. We

focus on multi-keyword searches as search terms, which

have database operations and that are extremely popular in

major applications, where we can return k documents based

on highest relevance rating. For multi-word search support,

we recommend vectors that represent documents and search

terms as vectors. In order to support top-k queries, the

relevance scores between documents and queries should be

calculated, so TF = IDF (frequency, frequency, words).

Inverse) is a weighting rule for calculating relevant scores

for order purposes.

In addition to improving search performance for a better

user experience, we also offer group-based bulk

segmentation (GMTS) search schemes that use the partition

and support for similar searches. Encrypt In this project, the

owner of the information will divide the keywords in the

ISSN: 2455-2631 © April 2018 IJSDR | Volume 3, Issue 4

IJSDR1804053 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 320

dictionary. (Assuming the dictionary contains all the

keywords that can be extracted from the whole document)

into multiple groups, and the indexes can be searched for

each group on the other side. In order to better control the

size of the index, , [18] into our chart, where the index of

the keyword group holds only the topmost documents of the

matched keyword (top-k, the keyword document shows the

c).

We also offer a random exploration algorithm (RTRA) to

increase data security, whereby the data owner creates a

binary tree that is searchable and determinable. Provide a

random switch to each node, so the data user can assign a

random key to each query. As a result, data users can

change their search results and access the search query path

using a different key, which will store high-precision search

queries. Finally, we combine GMTS and RTRA into a

powerful and secure solution for the problems we offer.

Proposed Methodology

Figure 1 Proposed Architecture

As shown in Figure 1, the system layout we consider

following components: data owner, data user, and cloud

server. The data owner uploads the D collection to the

Cloud server, but this collection may contain sensitive

information. To protect the privacy of information, the

owner of the data must encrypt D before hiring it to the

cloud server. In addition, for cloud servers to efficiently

process queries through an encrypted document collection,

the owner of the data generates an encrypted search index,

such as on the machine.

Finally, the data owner stores both an encrypted C-

encrypted collection of files and searchable indexes, such as

Ie, to the cloud, and shares the secret key to create and

capture confidential documents with the user. Information

authorized by the channel. Safe When a user wants to search

with a query, he / she creates a trapdoor T for this query first

by encrypting the query and then sends a shortcut to the

cloud server for query processing. After receiving the T, the

cloud server will calculate the relative score between the

trapdoor T and the document in the Ie index, and return k

the highest-scoring document to the user.

Let D be a set of plaintext documents that the data owner

will outsource to the cloud server and Di will display the

document in D.

Key Generation: - The data owner generates a key using a

random generator. This secret key is used for encryption of

the document index.

Encrypted Index Generation: - The document index is

prepared using Lucene indexer and applies the cosine

similarity score calculator to obtain scores for relevant

documents.

TF IDF Score

Calculation

 ∑

..... (1)

Cosine Score

Calculation

| | | |

...... (2)

Lucent Score Index : Every document has its own score in

index. These indices are encrypted using matrix

multiplication with the secret key. These encrypted indices

are stored with the cloud server.

Document Upload: - The documents are encrypted using

Blowfish algorithm. These encrypted documents are

uploaded to the cloud server.

Trapdoor Generation: - The data owner shares a secret

key sk with the data user to generate a trap door via a secure

channel.

The owner of the data has a collection of F data documents

to be outsourced to the server in the encrypted C form. To

enable search capability on C for effective data utilization,

the data owner will first build a search index I using F's

Lucene Indexer before outsourcing, and then outsource both

the index I and the collection of encrypted documents C to

the cloud server.

The work deals with efficient algorithms to assign

identifiers (ID) to users in the cloud in such a way that the

FILE identifiers are anonymous using a distributed

calculation without central authority as the data is

encrypted.

Since there are N nodes, this assignment is essentially a

permutation of the integers {1N} with each FILE that is

known only by the node to which it is assigned. Our main

algorithm is based on a method of anonymously sharing

simple data and results in methods for the efficient

exchange of complex data.

To search the collection of documents for certain keywords,

an authorized user who has an identification and a specific

designation acquires a corresponding K through our search

control mechanisms.

Upon receiving T from a data user, the server in the cloud is

responsible for searching the index I and then returns the

corresponding set of encrypted documents. To improve the

accuracy of document retrieval, the cloud server must

classify the search result according to some classification

criteria (for example, coordinate match) and assign

anonymous FILE ID [6] to the user in the cloud to Make the

ISSN: 2455-2631 © April 2018 IJSDR | Volume 3, Issue 4

IJSDR1804053 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 321

data cloud more secure. In addition, to reduce the cost of

communication, the user of the data can send an optional k

number together with the trap door T, so that the server in

the cloud only sends the top-k documents that are most

relevant to the query of search.

Finally, the access control mechanism is used to manage the

decryption capabilities provided to users and the data

collection can be updated in terms of inserting new

documents, updating existing ones and deleting existing

documents.

Encryption Algorithm

Blowfish is a popular security algorithm that was developed

by Bruce Schneier in the advent of the year 1994. The

algorithm works on the same line as DES and consumes

block blocks with blocks of a size of 64 bits. Blowfish

became quite popular after its arrival, just because Bruce

Schneier [1] himself is one of the most famous experts in

cryptology and, above all, the algorithm is not patented,

open source is free and available for its use and

modifications. Blowfish is a 64-bit block cipher with a

variable length key. Define 2 different boxes: S boxes, one

box P and four boxes S [3].

Figure 2 Fiestal Network

Taking into account that P box P is a one-dimensional field

with 18 values of 32 bits. The tables contain variable values;

those can be implemented in the code or generated during

each initialization. The frames S S1, S2, S3 and S4 each

contain 256 32-bit values. Blowfish is a symmetric

encryption algorithm, which means that it uses the same

secret key to encode and decrypt messages. Blowfish is also

a block cipher [5], which means that it divides the message

into blocks of fixed length during encryption and

decryption. The block length for Blowfish is 64 bits;

Messages that do not have a size of multiples of eight bytes

must be filled.

Blowfish consists of two parts: key expansion and data

encryption. During the expansion stage of the key, the key

entered becomes several matrices of sub-keys in a total of

4168 bytes. There is the matrix P, which is eighteen boxes

of 32 bits, and the boxes S, which are four matrices of 32

bits with 256 entries each. After initialization of the string,

the first 32 bits of the key are XORed with P1 (the first 32-

bit box in the matrix P). The second 32 bits of the key are

XORed with P2, and so on, until all 448 or fewer key bits

have been XORed. Cycle through the key bits returning to

the beginning of the key, until the entire set P has been

processed. XORed with the key. Encrypt the zero string

with the Blowfish algorithm, using the modified P matrix

above, to getablock 64 bits. Replace P1 with the first 32

output bits, and P2 with the second 32 output bits (from the

64-bit block). Use the 64-bit output as input again in the

Blowfish encryption, to get a new block of 64 bits. Replace

the following values in the matrix P with the block. Repeat

for all the values in the matrix P and all the squares S in

order.

Encrypt the whole zero chain using the Blowfish algorithm

[12], using the modified P matrix above, to obtain a block of

64 bits. Replace P1 with the first 32 output bits, and P2 with

the second 32 output bits (from the 64-bit block). Use the

64-bit output as input again in the Blowfish encryption, to

get a new block of 64 bits. Replace the following values in

the matrix P with the block. Repeat for all the values in the

matrix P and all the squares S in order.

Conclusion

In this document, we focus on improving the performance

and security of multiple top-k similarities finding on

encrypted data. In order to improve search performance, we

will store top-ck documents of each word segment when

indexing. Previous work [1] focused on providing personal

information to the data in the cloud, using multi-word

search in encrypted cloud data using a similar measure of

efficiency. Coincidence of coordinates Previous work [4]

also presents the basic concepts of using internal product

safety calculations.

References

[1] J. Tang, Y. Cui, Q. Li, K. Ren, J. Liu, and R. Buyya,

“Ensuring security and privacy preservation for cloud data

services,” ACM Computing Surveys, 2016.

 [2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R.

Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I.

Stoica, and M. Zaharia, “A view of cloud computing,”

Communications of the ACM, vol. 53, no. 4, pp. 50–58,

2010.

[3] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky,

“Searchable symmetric encryption: Improved definitions

and efficient constructions,” in Proceedings of the 13th

ACM Conference on Computer and Communications

Security. ACM, 2006, pp. 79–88.

[4] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G.

Persiano, “Public key encryption with keyword search,” in

ISSN: 2455-2631 © April 2018 IJSDR | Volume 3, Issue 4

IJSDR1804053 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 322

Advances in Cryptology- Eurocrypt 2004. Springer, 2004,

pp. 506–522.

[5] Z. Ying, H. Li, J. Ma, J. Zhang, and J. Cui, “Adaptively

secure ciphertext-policy attribute-based encryption with

dynamic policy

updating,” Sci China Inf Sci, vol. 59, no. 4, pp. 042 701:1–

16, 2016.

[6] D. X. Song, D. Wagner, and A. Perrig, “Practical

techniques for searches on encrypted data,” in Security and

Privacy, 2000. SP 2000. Proceedings. 2000 IEEE

Symposium on, 2000, pp. 44–55.

[7] E.-J. Goh et al., “Secure indexes.” IACR Cryptology

ePrint Archive, vol. 2003, p. 216, 2003.

[8] Y.-C. Chang and M. Mitzenmacher, “Privacy preserving

keyword searches on remote encrypted data,” in Applied

Cryptography and Network Security. Springer, 2005, pp.

442–455.

 [9] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving

Secure, Scalable, and Fine-Grained Data Access Control in

Cloud Computing,” Proc. IEEE INFOCOM, 2010.

[10] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-

Preserving Public Auditing for Data Storage Security in

Cloud Computing,” Proc. IEEE INFOCOM, 2010.

[11] N. Cao, Z. Yang, C. Wang, K. Ren, and W. Lou,

“Privacy preserving Query over Encrypted Graph-

Structured Data in Cloud Computing,” Proc. Distributed

Computing Systems (ICDCS), pp. 393-402, June, 2011.

[12] Bruce Schneier, “Applied Cryptography”, John Wiley

& Sons, Inc. 1996

[13] The homepage of description of a new variable-length

key, 64-bit block cipher

http://www.counterpane.com/bfsverlag.html

[14] Patterson and Hennessy, “Computer Organization &

Design: The Hardware/ Software Interface”, Morgan

Kaufmann, Inc. 1994

[15] B. Schneier, "Description of a New Variable-Length

Key, 64-bit Block Cipher (Blowfish)," Fast Software

Encryption: Second International Workshop, Leuven,

Belgium, December 1994, Proceedings, Springer-

Verlag,1994, pp.191-204.

[16] S. Vaudenay, "On the Weak Keys in Blowfish," Fast

Software Encryption, Third International Workshop

Proceedings, SpringerVerlag, 1996, pp. 27-32.

[17] P. Karthigai Kumar and K. Baskaran. 2010. An ASIC

implementation of low power and high throughput blowfish

crypto algorithm. Microelectron. J. 41, 6 (June 2010), 347-

355.

[18] TingyuanNie; Chuanwang Song; XulongZhi; ,

"Performance Evaluation of DES and Blowfish

Algorithms," Biomedical Engineering and Computer

Science (ICBECS), 2010 International Conference on , vol.,

no., pp.1-4, 23- 25 April 2010. [8] TingyuanNie; Teng

Zhang; , "A study of DES

