
ISSN: 2455-2631 © May 2017 IJSDR | Volume 2, Issue 5

IJSDR1705097 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 545

IMPLEMENTATION OF LAN PROTOCOL IN FPGA

BASED C-BAND SYNTHESIZER IN RADAR

1
Chandana B.Y,

2
J Pushpanjali,

3
Ruchit M.S.

1
M.Tech. Student,

2
Assistant Professor,

3
Senior Engineer

1,2
Bangalore institute of technology,

3
Bharat Electronics Limited

Bangalore, India

Abstract—Ethernet is a mode to connect devices remotely. Local Area Network (LAN) is a protocol which governs the set

of laws for data transfer across devices. This paper involves the implementation of LAN protocol into a frequency

synthesizer unit which operates in C-Band. LAN protocol is necessary as the data communication needs to happen at very

fast rates as the unit requires very low switching times between the frequencies it needs to hop. This protocol has been

implemented on a soft processor (Microblaze) invoked in a Xilinx (Artix7) FPGA (Field Programmable Gate Array).

Keywords— LAN; RJ45; Phy; FPGA; MicroBlaze; Synthesizer;

I. INTRODUCTION

LAN protocol consists of set of rules which govern data
transfer across the devices. It requires a RJ45 connector on
the board which transfers the data from the LAN cable to
the PCB of the module. Connector also has filters which
decouples noise from the signal lines. The choice of the
connector and LAN cable being used needs to optimized for
the application. FPGA can interpret only converted physical
layer instruction from arrived data on the connector.. This
operation is being carried out by a phy device. The phy
device needs to be configured to auto negotiation mode to
let the data transfer happen to the best possible speed, either
10/100/1000 Mbps, which can be achieved by the channel.
There are LED pins which indicate the mode of operation of
the phy device.

Data coming into the phy device is converted into nibble
or byte data along with necessary signals such as enable,
clock etc. Similarly, data which needs to transmit to the
RADAR controller[1] should be sent to the phy device
along with enable, clock and other necessary signals. The
mode of the phy device can be changed by changing the
hardware connections to the configuration pins or by soft
controlling the device through the FPGA by writing its
internal registers. In this paper, only four receive bits are
used as it operates in 10/100 Mbps modes.

 Figure 1 depicts a block level representation of how
data transfer takes place between the module and RADAR
controller, shown as a PC.

Fig. 1. Connection between Radar controller and module

II. THE FUNDAMENTAL COMPONENTS

A. Block diagram of synthesizer module

 This protocol has been implemented in a frequency
synthesizer project which operates in C band frequency
range. Data which is sent to the module from a remote

controller through LAN needs to be extracted and
implemented by the FPGA in quick time as the module
needs to work in a very agile environment. The block level
diagram of the module is depicted in figure 2.

 The module includes a PLL (Phase Locked Loop) [2]
which locks to a particular frequency governed by the
hardware connected to it and the data written into the PLL
by the FPGA. The module also contains a DDS (Direct
Digital Synthesizer) [3] which is used to switch among the
programmed set of frequencies in less time. It also includes
multipliers, switch filter banks (band pass), discrete filters
and micro-strip based filters.

Fig. 2. Block diagram of the synthesizer module

B. Microblaze processor

A soft processor needs to be invoked into the FPGA.
Here, a processor named microblaze[4] has been developed
into a Xilinx FPGA. Various blocks need to be invoked for
the microprocessor to function correctly. The various blocks
for the microprocessor are listed below.

1) Clocking wizard: The processor needs a clocking

wizard block to provide the clock frequency for its

operation. Currently, 100 MHz clock is being generated by

ISSN: 2455-2631 © May 2017 IJSDR | Volume 2, Issue 5

IJSDR1705097 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 546

the wizard through an inbuilt PLL mechanism. The input

clock to the block is provided by the FPGA.

2) Microblaze debug module: It requires a Debug

module block to be invoked which assigns the external

interrupts to the processor.

3) Processor system reset: A reset module block has to

be called which provides reset commands to various other

blocks used.

4) Memory: The processor needs a localized memory of

32kb width. BRAM is the memory used to map the

microprocessor.

5) Microblaze: A processor block needs to be called for

which has a trace buffer size of 8kb.

6) AXI interface: The microprocessor pinouts are

interfaced to the FPGA via An AXI interface. The AXI

interface translates the data which can be interpreted by the

FPGA.

7) AXI GPIO: GPIO is AXI based which carry the

inputs and outputs to and from the processor. In this

application, there are 15 AXI blocks used out of which 6 are

inputs and remaining 9 are outputs. Except for one output

block which is of 4 bits and provides the frequency

information, all the other bocks are 32 bits in size.

III. SOFTWARE DESIGN

The FPGA which needs to be programmed requires
software known as VIVADO[5]. This software helps to
create the HDL and microprocessor blocks, synthesize,
compile, implement and generate a bit file that can be
loaded onto the FPGA.

The microprocessor which is invoked the VIVADO then
needs to assign a file which tells the microprocessor what it
needs to do. Here, applications know as Software
Development Kit (SDK) is used[6].

The blocks mentioned in the previous sections need to
invoked from the IP catalog the FPGA which is selected
during the creation of the project in VIVADO.

The block of microblaze processor and its peripherals
are shown in figure 3.

Fig. 3. Block diagram of Microblaze processor

 During the development of the microprocessor block,
every pin needs to be carefully connected. If not connected
properly, the processor block will throw errors and will not
be invoked properly. The pins of the FPGA which are
actually interfaced with the processor need to be mapped
properly during the implementation of the project. The
microprocessor block when generated also generates an
instantiation file which can be used as a component in the
main VHDL code.

 The bit file which is generated by the VIVADO in the
initial stage includes only the hardware configuration of the
processor. It needs to be assigned a file which tells it to
function in a specified manner. The file with .elf extension
is generated is known as an ELF file. This file is generated
by the SDK software.

To SDK software export the generated bit file, along
with the microblaze block. A C-project needs to be created
where the functions to be executed the processor need to be
written in C. This C project needs to be assigned the
hardware platform which is imported from the VIVADO as
shown in figure 4.

Fig. 4. C-program in SDK software

The various steps involved in the C code are listed
below.

A. Initilization

In this function, various parameters are set for the
processor. IP version of 4 is set. Header length of the IP is
set as 20. IP time to live is set as 128. Set 0 as IP checksum.
UDP length is set to 20. UDP checksum is set to 0. Source
and destination MAC are set a value of 6 bytes each. UDP
source and destination ports are set to a common number.
Initialize the source and destination IP addresses.

B. DATA RECEIVE

The data received by the FPGA is stored into a First In
First Out register (FIFO) of 32 bit width. Once the data
arrives, an interrupt is generated and given to the processor.
On the interrupt event, the C code starts to write its internal
registers with the data present in the FIFO queue.

C. DATA INTERPRETATION

The data present in the internal registers of the
microprocessor, which are 32 bit wide, is now analyzed.
The LAN protocol formats have fixed defined locations.
Now, the sender MAC and receive MAC addresses are read
to know the valid transmitter and if the data is meant for the

ISSN: 2455-2631 © May 2017 IJSDR | Volume 2, Issue 5

IJSDR1705097 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 547

module. Next, the mode is checked. This gives the
information about the type of protocol being called for.

D. ADDRESS RESOLUTION PROTOCOL

The header provides the information about if the ARP
protocol is called for. Next, it is checked if it is an ARP
request or reply. If it is an ARP request, the IP address of
the sender is recorded and it is checked if the request is
intended for the module. If yes, then reply is sent to the
sender in ARP reply format. If it is an ARP reply, it means
sender has replied for the ARP request.

E. IP PROTOCOL

If the data does not have an ARP header, then it is
checked for IP protocol header. If it matches, it can mean
the data can be TCP, UDP, ICMP and many other protocols.

F. USER DATAGRAM PROTOCOL

 If it’s confirmed that it is an IP protocol, then it is
checked UDP header. If it matches, then it means that the
remaining data bits are the payload[7].

The C project is now saved and built to generate an .elf
file. In the VIVADO software, the microprocessor needs to
be associated with the generated elf file and the project
needs to be updated to generate a bit file. This bit file now
contains both the hardware section which includes the HDL
code and the processor itself and the software part which in
includes the elf file to instruct the microprocessor. This bit
file can be converted into a .mcs file which can be loaded
into a flash device mounted inside the module. Time taken
to load a .mcs file is greater than the .bit file.A Graphical
User Interface has been developed to transmit UDP packets
to the module.

In this application, UDP packets are sent in two formats,
format A and format B. Both the formats are encoded with
an initial 2 bytes of data. This is to ensure that the UDP
packet which is sent to the module is a valid data from the
RADAR controller. The difference between the formats is
that the 2 bytes are different. Two different applications run
when the two formats are detected. The former store the
frequency information into a temporary register, and the
latter transfers the frequency information to the FPGA
which performs the necessary action to change the
frequency. This is done to achieve synchronization with the
RADAR controller.

IV. RESULT

The PC IP address is set to RADAR controller IP
address. Figure 4 depicts how the IP address can be altered.

Fig. 4. IP address of computer

Once the module is powered up, the phy device is active.
The LEDs on the module confirms that it is in Auto-
negotiation mode. A PING operation is done to confirm the
IP address of the module. The receiver IP address is sent
with a ping instruction from the command prompt of the
PC. If the IP address matches, the module replies to the
request and result are shown in figure 5.

Fig. 5. PING response

Acknowledgment

I would like to thank Mr. RUCHIT.M.S Senior Engineer
C-D&E (MWC) Bharat Electronics Limited, for granting
permission to publish this paper. I would like to thank
Mrs. J Pushpanjali, assistant professor, dept. of ECE,
Bangalore institute of technology (BIT) for support in the
completion of the project. I would like to thank Dr. Anitha
S, professor, dept. of biomedical engineering, ACSCE,
Bangalore for extending warm support in the completion of
the project.

References

[1] Feng Nai, Sebastián M. Torresand and Robert D.
Palmer, “Adaptive Beamspace Processing for Phased-
Array Weather Radars,” P IEEE Transactions on
Geoscience and Remote Sensing (Volume: 54, Issue:
10, Oct. 2016).

[2] Saeed Golestan, Seyyed Yousef Mousazadeh , Josep
M. Guerrero, “ A Critical Examination of Frequency-
Fixed Second-Order Generalized Integrator-Based

ISSN: 2455-2631 © May 2017 IJSDR | Volume 2, Issue 5

IJSDR1705097 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 548

Phase-Locked Loops”, IEEE Transactions on Power
Electronics (Volume: 32, Issue: 9, Sept. 2017).

[3] I Gorka Rubio-Cidre, Alejandro Badolato, Luis
Úbeda-Medina, Jesús Grajal, Beatriz Mencia-Oliva,
“DDS-Based Signal-Generation Architecture
Comparison for an Imaging Radar at 300 GHz,” IEEE
Transactions on Instrumentation and
Measurement (Volume: 64, Issue: 11, Nov. 2015).

[4] Gil Kedar, Avi Mendelson, and Israel Cidon, “SPACE:
Semi-Partitioned CachE for Energy Efficient, Hard
Real-Time Systems,” 0018-9340 (c) 2016 IEEE.
Personal use is permitted, but
republication/redistribution requires IEEE permission.

[5] Embedded Processor Hardware data sheet, “Vivado
Design Suite
Tutorial”.

[6] Microblaze MCS Tutorial Jim Duckworth, WPI Data
sheet, “Microblaze MCS Tutorial for Xilinx Vivado
2015”.

[7] Microchip AN1120 data sheet, “Ethernet theory of
operation”.

