A STUDY ON L-FUZZY VECTOR SUBSPACES AND ITS FUZZY DIMENSION

R. Geetha

Assistant Professor Department of Mathematics, KG College of Arts and Science, Coimbatore-641035, Tamil Nadu, India.

ABSTRACT: This paper gives the definition of L-fuzzy vector subspace and defining its dimension by an L-fuzzy natural number. It is proved that for a finite dimensional L-fuzzy vector subspace, the intersection of two L-fuzzy vector subspace is also a L-fuzzy vector subspace and also the inequality $\dim(\widehat{E1} + \widehat{E2}) + \dim(\widehat{E1} \cap \widehat{E2}) = \dim\widehat{E1} + \dim\widehat{E2}$ holds without any restricted conditions.

INTRODUCTION

Fuzzy vector space was introduced by Katsaras and Liu. The dimension of a fuzzy vector space is defined as a n-tuple by Lowen. The study of fuzzy vector spaces started as early as 1977. A fuzzy subset of a non-empty set S is a function from S into [0,1]. Let A denote a fuzzy subspace of V over a fuzzy subfield Kof F and let X denote a fuzzy subset of V such that $X \subseteq A$. Let(X) denote the intersection of all fuzzy subspaces of V over Kthat contain X and are contained in A.

PRELIMINARIES

Consider the set X and completely distributive lattice L. Let the power set of X be 2^x and the set of all L-fuzzy sets on X be L^x respectively. For any $A \subseteq X$, the cardinality of A be denoted by |A|. An element L is called a prime element if $a \ge b \land c$ implies $a \ge b$ or $a \ge c$ and an element L is called co-prime if $a \le b \lor c$ implies $a \le b$ or $a \le c$.

The set of non-unit prime elements in L is denoted by P(L) and the set of non-zero co-prime elements in L is denoted by J(L). The binary relation < is defined by for all a, $b \in L$, a < b if and only if for every subset $D \subseteq L$ with $a \leq d$, the relation $b \leq sup D$ is possible only when $d \in D$ with $a \leq d$. The greatest minimal family of b is denoted by $\beta(b) = \{a \in L: a < b\}$ and $\beta^*(b) = \beta(b) \cap J(L)$. Moreover for $b \in L$ we define $\alpha(b) = \{a \in L: a < {}^{op} b\}$ and $\alpha^*(b) = \alpha(b) \cap P(L)$. In a completely distributive lattice L, there exist $\alpha(b)$ and $\beta(b)$ for each $b \in L$ and $b = \lor \beta(b) = \land \alpha(b)$.

Let $\mathbb{N}(L)$ denotes the L-fuzzy natural number and the relation of α -cut sets are defined as follows

For any $\lambda, \mu \in \mathbb{N}(L)$, $a \in L$,

 $(i) (\lambda + \mu)_{(a)} \subseteq \lambda_{(a)} + \mu_{(a)} \subseteq \lambda_{[a]} + \mu_{[a]} \subseteq (\lambda + \mu)_{[a]}; \quad (ii) (\lambda + \mu)^{(a)} \subseteq \lambda^{(a)} + \mu^{(a)} \subseteq \lambda^{[a]} + \mu^{[a]} \subseteq (\lambda + \mu)^{[a]};$

(iii) For any $\lambda, \mu \in \mathbb{N}(L)$ and $a \in P(L)$ implies $(\lambda + \mu)^{(a)} = \lambda^{(a)} + \mu^{(a)}$.

1. L-FUZZY VECTOR SUBSPACES

DEFINITION 1.1

L-FUZZY VECTOR SUBSPACE

L-Fuzzy Vector Subspace (LFVS) is a pair $\tilde{E} = (E, \mu)$ where E is a vector space on field F, $\mu: E \to L$ is a map with the property that for any $x, y \in E$ and $k, l \in F$ such that $\mu(kx+ly) \ge \mu(x)\Lambda \mu(x)$.

When L= [0,1] then L-Fuzzy Vector Subspace becomes fuzzy vector subspace.Let $\tilde{E} = (E, \mu)$ be a member of LFVS then

$$\begin{split} \tilde{E}_{[a]=} \, \mu_{[a]} = & \{ x \in E: \, \mu(x) \ge a \} \,, \\ \tilde{E}_{(a)=}^{[a]=} \, \mu_{[a]} = & \{ x \in E: \, a \notin \alpha(\mu(x)) \} \,, \\ \tilde{E}^{[a]=} \, \mu^{[a]} = & \{ x \in E: \, a \notin \alpha(\mu(x)) \} \,, \\ \tilde{E}^{(a)=} \, \mu^{(a)} = & \{ x \in E: \, \mu(x) \leq a \} \,. \end{split}$$

THEOREM: 1.1

Let E be a vector space, $\mu \in L^E$ and $\tilde{E} = (E, \mu)$ then the following statements are equivalent.

(i) \tilde{E} is an L-fuzzy vector subspace.(ii) For all $a \in L$, $\tilde{E}_{[a]}$ is a vector space.

(iii) For all $a \in J(L)$, $\tilde{E}_{[a]}$ is a vector space. (iv) For all $a \in L$, $\tilde{E}^{[a]}$ is a vector space.

(v) For all $a \in P(L)$, $\tilde{E}^{[a]}$ is a vector space. (vi) For all $a \in P(L)$, $\tilde{E}^{(a)}$ is a vector space.

PROOF:

It is enough if we prove $1 \Leftrightarrow 4$ and $1 \Leftrightarrow 6$

(i) Assume that \tilde{E} is an L-fuzzy vector subspace

Suppose that $x,y \in \tilde{E}^{[a]}$ then $a \notin \alpha(\mu(x))$ and $a \notin \alpha(\mu(y))$

i.e. $a \notin \alpha(\mu(x)) \cup \alpha(\mu(y)) = \alpha(\mu(x)\Lambda \mu(y))$

then $\alpha(\mu(x)\Lambda \mu(y)) \supseteq \alpha(\mu(kx+ly))$

We have $a \notin \alpha(\mu(kx+ly))$

Hence $kx+ly \in \tilde{E}^{[a]}$

Therefore $\tilde{E}^{[a]}$ is a vector space.

Suppose that for all $a \in L$, $\tilde{E}^{[a]}$ is a vector space.

Let $x, y \in E$ and $k, l \in F$ then $kx+ly \in \tilde{E}^{[a]}$ if and only if $x \in \tilde{E}^{[a]}$ and $y \in \tilde{E}^{[a]}$

We have
$$\mu(kx+ly) = \Lambda (a \Lambda \tilde{E}^{[a]}) (kx+ly)$$

$$= \Lambda (aV (E^{[a]} (x) \Lambda E^{[a]} (y))$$

a \varepsilon L
$$= (\Lambda (aV (\tilde{E}^{[a]} (x))) \Lambda (aV (\tilde{E}^{[a]} (x)))$$

a \varepsilon L
$$= (u(x) \Lambda u(y))$$

$$-\mu(x) \Lambda \mu(y)$$

Therefore \tilde{E} is an L-fuzzy vector subspace.

Hence $1 \Leftrightarrow 4$

(ii) Suppose that $x, y \in \tilde{E}^{(a)}$ then $\mu(x) \leq a$ and $\mu(y) \leq a$

Since $a \in P(L)$ then $\mu(x) \land \mu(y) \leq a$ (Since $\tilde{E} = (E, \mu)$ is an LFVS)

That is μ (kx+ly) $\leq a$

Implies $kx+ly \in \tilde{E}^{(a)}$

Therefore $\tilde{E}^{(a)}$ is a vector space.

Assume x, $y \in E$ and k, $l \in F$ then

 $kx+ly \in \tilde{E}^{(a)}$ if and only if $x \in \tilde{E}^{(a)}$ and $y \in \tilde{E}^{(a)}$ (Since $\tilde{E}^{(a)}$ is a vector space)

We have μ (kx+ly) = $\bigwedge (aV\tilde{E}^{(a)})(kx+ly)$ $a\in P(L)$

$$= \bigwedge_{a \in P(L)} (aV\tilde{E}^{(a)}(x) \wedge \tilde{E}^{(a)}(y)))$$

$$= (\bigwedge_{a \in P(L)} (aV\tilde{E}^{(a)}(x))) \land (\bigwedge_{a \in P(L)} (aV\tilde{E}^{(a)}(y))) \\ a \in P(L)$$

 $= \mu(x) \Lambda \mu(y)$

Therefore \tilde{E} is an L-fuzzy vector subspace. Therefore $1 \Longleftrightarrow 6$

Hence the Theorem.

THEOREM: 1.2

Let V be a vector space, $\mu:E\rightarrow L$ is a map and for all $a,b \in L,\beta$ $(a\Lambda b) = \beta(a) \cap \beta(b)$ then the following statements are equivalent:

(1) \tilde{E} is an L-fuzzy vector subspace. (2) For all $a \in L, \tilde{E}_{(a)}$ is a vector space.

PROOF:

Assume \tilde{E} is an L-fuzzy vector subspace.

Suppose that $x, y \in \tilde{E}_{(a)}$ then $a \in \beta(\mu(x))$ and $a \in \beta(\mu(y))$

i.e $a \in \beta(\mu(x)) \cap \beta(\mu(y))$

Since for all $a, b \in L$, $\beta(a \land b) = \beta(a) \cap \beta(b)$ and \tilde{E} is an L-fuzzy vector subspace

i.e $a \in \beta(\mu(x) \land \mu(y)) \subseteq \beta(\mu(ax+by))$

 \Rightarrow ax+by $\in \tilde{E}^{(a)}$

Therefore $\tilde{E}_{(a)}$ is a vector space.

Next assume that for all $a \in L$, $\tilde{E}_{(a)}$ is a vector space.

Let $x, y \in E$ and $k, l \in F$ then $kx+ly \in \tilde{E}_{(a)}$ if and only if $x \in \tilde{E}_{(a)}$ and $y \in \tilde{E}_{(a)}$ (Since $\tilde{E}_{(a)}$ is a vector space)

We have
$$\mu$$
 (kx+ly) = \vee (a $\wedge \tilde{E}_{(a)}$)(kx+ly)
a $\in L$

$$= \bigvee (a \land (\tilde{E}_{(a)}(x) \land \tilde{E}^{(a)}(y)))$$

a \equiv L

$$= (\vee (a \land (\tilde{E}_{(a)}(\mathbf{x}))) \land (\vee (a \land (\tilde{E}_{(a)}(\mathbf{y})) \\ a \in \mathbf{L} \qquad a \in \mathbf{L}$$

 $= \mu(x) \Lambda \mu(y)$

Therefore \tilde{E} is an L-fuzzy vector subspace.

Therefore the above two statements are equivalent.

DEFINITION 1.2

Let $\widetilde{E_1} = (E, \mu_1)$ and $\widetilde{E_2} = (E, \mu_2)$ be two fuzzy vector subspaces on E. The intersection of $\widetilde{E_1}$ and $\widetilde{E_2}$ is defined as $\widetilde{E_1} \cap \widetilde{E_2} = (E, \mu_1 \wedge \mu_2)$ and the sum of $\widetilde{E_1}$ and $\widetilde{E_2}$ is defined as $\widetilde{E_1} + \widetilde{E_2} = (E, \mu_1 + \mu_2)$ Where $\mu_1 + \mu_2$ is defined as for all $x \in E$, $(\mu_1 + \mu_2)(x) = \vee (\mu_1(x_1) \wedge \mu_2(x_2))$

$$\begin{aligned} x &= x_1 + x_2 \\ &= \bigvee (\mu_1(x_1) \land \mu_2(x - x_1)). \\ &x_1 \in E \end{aligned}$$

DEFINITION 1.3

Let $\widetilde{E_1} = (E, \mu_1)$ and $\widetilde{E_2} = (E, \mu_2)$ be two members on LFVS and $E = E_1 \oplus E_2$ be the direct sum of $\widetilde{E_1}$ and $\widetilde{E_2}$ defined as $E_1 \oplus E_2 = (E, \mu_1) \oplus \mu_2$ is defined as for all $x \in E$, $x = x_1 \oplus x_2$, $x_i \in E_i$, i = 1, 2

 $(\mu_1 \oplus \mu_2)(x) = (\mu_1 \oplus \mu_2)(x_1 \oplus x_2) = \mu_1(x_1) \land \mu_2(x_2).$

THEOREM: 1.3

Let $\widetilde{E_1} = (E, \mu_1)$ and $\widetilde{E_2} = (E, \mu_2)$ be two members on LFVS on E we have

(i) $\widetilde{E_1} \cap \widetilde{E_2}$ is a member of LFVS on E. (ii) $\widetilde{E_1} + \widetilde{E_2}$ is a member of LFVS on E.

PROOF:

Given $\widetilde{E_1}$ and $\widetilde{E_2}$ be two members on LFVS then $\mu_1(kx+ly) \ge \mu_1(x) \land \mu_1(y)$ and $\mu_2(kx+ly) \ge \mu_2(x) \land \mu_2(y)$

To prove $\widetilde{E_1} \cap \widetilde{E_2}$ is a member of LFVS on E

 $\widetilde{E}_1 \cap \widetilde{E}_2 = (E, \mu_1 \land \mu_2)$ (By definition 3.2)

Consider (E, $\mu_1 \wedge \mu_2$) = $\mu_1 \wedge \mu_2$ (kx+ly)

 $= \mu_1(kx+ly) \wedge \mu_2(kx+ly)$

 $\geq (\mu_1(x) \land \mu_1(y) \land \mu_2(x) \land \mu_2(y))$

Therefore $\widetilde{E_1} \cap \widetilde{E_2}$ is a member of LFVS on E.

Similarly we can prove $\widetilde{E_1} + \widetilde{E_2}$ is also a member of LFVS on E.

THEOREM: 1.4

Let $\widetilde{E_1} = (E, \mu_1)$ and $\widetilde{E_2} = (E, \mu_2)$ be two members on LFVS on E .Suppose that for any $a, b \in L$, we have $\beta(a\Lambda b) = \beta(a) \cap \beta(b)$ then (1) $(\widetilde{E_1} \cap \widetilde{E_2})_{(a)} = (\widetilde{E_1})_{(a)} \cap (\widetilde{E_2})_{(a)}$ (2) $(\widetilde{E_1} \cap \widetilde{E_2})_{(a)} = (\widetilde{E_1})_{(a)} \cap (\widetilde{E_2})_{(a)}$.

2.FUZZY DIMENSION OF L-FUZY VECTOR SUBSPACES

DEFINITION 2.1

Let $\mathbb{N}(L)$ be the family of L-fuzzy natural number. The map dim:LFVS $\rightarrow \mathbb{N}(L)$ is

defined by dim $\tilde{E}(n) = \vee (a \wedge \dim \tilde{E}_{[a]})_{(n)}$ $a \in L$

is called the L-fuzzy dimensional function of the L-fuzzy vector subspace \tilde{E} , it is an fuzzy natural number.

Also dim $\tilde{E}(n) = \vee \{a \in L: \dim \tilde{E}_{[a]} \ge n\}.$

THEOREM 2.1

Let $\widetilde{E1}=(E,\mu_1)$ and $\widetilde{E2}=(E,\mu_2)$ be two L-fuzzy vector subspaces then the following equalities holds dim $(\widetilde{E1} + \widetilde{E2}) + \dim (\widetilde{E1} \cap \widetilde{E2}) = \dim \widetilde{E1} + \dim \widetilde{E2}$

PROOF:

Given $\widetilde{E1}$ and $\widetilde{E2}$ be two L-fuzzy vector subspaces then the sum of $\widetilde{E1}$ and $\widetilde{E2}$ be denoted by $\widetilde{E_1} + \widetilde{E_2}$

$$(\dim(\widetilde{E1} + \widetilde{E2}) + \dim (\widetilde{E1} \cap \widetilde{E2}))^{(a)} = (\dim(\widetilde{E1} + \widetilde{E2}))^{(a)} + (\dim (\widetilde{E1} \cap \widetilde{E2}))^{(a)}$$
$$= \dim(\widetilde{E1} + \widetilde{E2})^{(a)} + (\dim (\widetilde{E1} \cap \widetilde{E2})^{(a)}$$
$$= \dim(\widetilde{E1}^{(a)} + \widetilde{E2}^{(a)}) + \dim(\widetilde{E1}^{(a)} \cap \widetilde{E2}^{(a)})$$
$$= \dim\widetilde{E1}^{(a)} + \dim \widetilde{E2}^{(a)}) - \dim(\widetilde{E1}^{(a)} \cap \widetilde{E2}^{(a)}) + \dim(\widetilde{E1}^{(a)} \cap \widetilde{E2}^{(a)})$$
$$= \dim\widetilde{E1}^{(a)} + \dim \widetilde{E2}^{(a)}$$

Therefore dim $(\widetilde{E1} + \widetilde{E2})$ + dim $(\widetilde{E1} \cap \widetilde{E2})$ = dim $\widetilde{E1}$ +dim $\widetilde{E2}$

Hence the theorem.

CONCLUSION

In this paper L-fuzzy vector subspace is defined and showed that its dimension is an L-fuzzy natural number. Based on the definitions some properties of crisp vector space s are hold in finite dimensional vector spaces. In particular the equality dim $(\widetilde{E1} + \widetilde{E2}) + \dim (\widetilde{E1} \cap \widetilde{E2}) = \dim \widetilde{E1} + \dim \widetilde{E2}$ holds without any restricted conditions.

REFERENCE

[1] Katsaras, A.K. and Liu, D.B. (1977) Fuzzy Vector Spaces and Fuzzy Topological VectorSpaces. Journal of Mathematical Analysis and Applications , 58, 135-146.

[2] Lubczonok, G. and Murali, V. (2002) On Flags and Fuzzy Subspaces of Vector Spaces.Fuzzy Sets and Systems , 125, 201-207.

[3] Abdukhalikov, K.S., Tulenbaev, M.S. and Umirbarv, U.U. (1994) On Fuzzy Bases of VectorSpaces. Fuzzy Sets and Systems , 63, 201-206.

[4] Abdukhalikov, K.S. (1996) The Dual of a Fuzzy Subspace. Fuzzy Sets and Systems , 82, 375-381.

[5] Lubczonok, P. (1990) Fuzzy Vector Spaces. Fuzzy Sets and Systems , 38, 329-343.

[6] Lowen, R. (1980) Convex Fuzzy Sets. Fuzzy Sets and Systems , 3, 291-310.

[7] Shi, F.G. and Huang, C.E. (2010) Fuzzy Bases and the Fuzzy Dimension of Fuzzy VectorSpaces. Mathematical Communications, 15, 303-310.

[8] Gierz, G., et al . (2003) Continuous Lattices and Domains. Encyclopedia of Mathematics andits Applications, Cambridge University Press, Cambridge.

[9] Dwinger, P. (1982) Characterizations of the Complete Homomorphic Images of a CompletelyDistributive Complete Lattice I. Indagationes Mathematicae (Proceedings), 85, 403-414.

[10] Wang, G.-J. (1992) Theory of Topological Molecular Lattices. Fuzzy Sets and Systems , 47,351-376.

[11] Huang, H.-L. and Shi, F.-G. (2008) L-Fuzzy Numbers and Their Properties. InformationSciences , 178, 1141-1151.

[12] Shi, F.-G. (2000) L-Fuzzy Relation and L-Fuzzy Subgroup. Journal of Fuzzy Mathematics , 8,491-499.

[13] Negoita, C.V. and Ralescu, D.A. (1975) Applications of Fuzzy Sets to Systems Analysis, InterdisciplinarySystems Research Series 11, Birkhaeuser, Basel.

[14] Shi, F.-G. (1995) Theory of L β -Nested Sets and L α -Nested Sets and Its Applications. Fuzzy Systems and Mathematics , 4, 65-72. (In Chinese)

[15] Shi, F.-G. (1996) L-Fuzzy Sets and Prime Element Nested Sets. Journal of MathematicalResearch and Exposition, 16, 398-402. (In Chinese)

[16] Shi, F.-G. (1996) Theory of Molecular Nested Sets and Its Applications. Journal of YantaiTeachers University, 1, 33-36. (In Chinese)

[17] Shi, F.-G. (2009) A New Approach to the Fuzzification of Matroids. Fuzzy Sets and Sys