A STUDY ON L-FUZZY VECTOR SUBSPACES AND ITS FUZZY DIMENSION

R. Geetha
Assistant Professor
Department of Mathematics, KG College of Arts and Science, Coimbatore-641035, Tamil Nadu, India.

Abstract

This paper gives the definition of L-fuzzy vector subspace and defining its dimension by an L-fuzzy natural number. It is proved that for a finite dimensional L-fuzzy vector subspace, the intersection of two L-fuzzy vector subspace is also a L-fuzzy vector subspace and also the inequality $\operatorname{dim}(\widetilde{\mathrm{E} 1}+\widetilde{\mathrm{E} 2})+\operatorname{dim}(\widetilde{\mathrm{E} 1} \cap \widetilde{\mathrm{E} 2})=\operatorname{dim} \widetilde{E 1}+\operatorname{dim} \widetilde{\mathrm{E} 2}$ holds without any restricted conditions.

INTRODUCTION

Fuzzy vector space was introduced by Katsaras and Liu. The dimension of a fuzzy vector space is defined as a n-tuple by Lowen. The study of fuzzy vector spaces started as earlyas 1977. A fuzzy subset of a non-empty set S is a function from S into $[0,1]$. Let A denote a fuzzy subspace of V over a fuzzy subfield Kof F and let X denote a fuzzy subset of V such that $\mathrm{X} \subseteq \mathrm{A}$. Let $\langle\mathrm{X}\rangle$ denote the intersection of all fuzzy subspaces of V over Kthat contain X and are contained in A .

PRELIMINARIES

Consider the set X and completely distributive lattice L. Let the power set of X be 2^{x} and the set of all L-fuzzy sets on X be L^{x} respectively. For any $A \subseteq X$,the cardinality of A be denoted by $|A|$.An element L is called a prime element if $a \geq b \wedge c$ implies $a \geq$ b or $\mathrm{a} \geq \mathrm{c}$ and an element L is called co-prime if $\mathrm{a} \leq \mathrm{b} \vee \mathrm{c}$ implies $\mathrm{a} \leq \mathrm{b}$ or $\mathrm{a} \leq \mathrm{c}$.

The set of non-unit prime elements in L is denoted by $P(L)$ and the set of non-zero co-prime elements in L is denoted by $J(L)$. The binary relation $<$ is defined by for all $a, b \in L, a<b$ if and only if for every subset $D \subseteq L$ with $a \leq d$,the relation $b \leq$ sup D is possible only when $d \in D$ with a $\leq d$. The greatest minimal family of b is denoted by $\beta(b)=\{a \in L$: $a<b\}$ and $\beta^{*}(b)=$ $\beta(b) \cap J(L)$.Moreover for $b \in L$ we define $\alpha(b)=\left\{a \in L: a<{ }^{o p} b\right\}$ and $\alpha^{*}(b)=\alpha(b) \cap P(L)$. In a completely distributive lattice L, there exist $\alpha(b)$ and $\beta(b)$ for each $b \in L$ and $b=\vee \beta(b)=\Lambda \alpha(b)$.

Let $\mathbb{N}(\mathrm{L})$ denotes the L-fuzzy natural number and the relation of α-cut sets are defined as follows
For any $\lambda, \mu \in \mathbb{N}(\mathrm{L}), a \in \mathrm{~L}$,

(iii) For any $\lambda, \mu \in \mathbb{N}(\mathrm{L})$ and $\mathrm{a} \in \mathrm{P}(\mathrm{L})$ implies $(\lambda+\mu)^{(\mathrm{a})}=\lambda^{(\mathrm{a})}+\mu^{(\mathrm{a})}$.

1. L-FUZZY VECTOR SUBSPACES

DEFINITION 1.1

L-FUZZY VECTOR SUBSPACE

L-Fuzzy Vector Subspace (LFVS) is a pair $\tilde{E}=(\mathrm{E}, \mu)$ where E is a vector space on field $\mathrm{F}, \mu: \mathrm{E} \rightarrow \mathrm{L}$ is a map with the property that for any $\mathrm{x}, \mathrm{y} \in \mathrm{E}$ and $\mathrm{k}, \mathrm{l} \in \mathrm{F}$ such that $\mu(\mathrm{kx}+\mathrm{ly}) \geq \mu(\mathrm{x}) \Lambda \mu(\mathrm{x})$.

When $\mathrm{L}=[0,1]$ then L-Fuzzy Vector Subspace becomes fuzzy vector subspace.Let $\tilde{E}=(\mathrm{E}, \mu)$ be a member of LFVS then

$$
\begin{array}{ll}
\tilde{E}_{[\mathrm{a}]=} \mu_{[\mathrm{a}]}=\{\mathrm{x} \in \mathrm{E}: \mu(\mathrm{x}) \geq \mathrm{a}\}, & \tilde{E}_{(\mathrm{a})=} \mu_{(\mathrm{a})}=\{\mathrm{x} \in \mathrm{E}: \mathrm{a} \in \beta(\mu(\mathrm{x}))\} . \\
\tilde{E}^{[\mathrm{ad]}}=\mu^{[\mathrm{ad]}}=\{\mathrm{x} \in \mathrm{E}: \mathrm{a} \notin \alpha(\mu(\mathrm{x}))\}, & \tilde{E}^{(\mathrm{a})}=\mu^{(\mathrm{a})}=\{\mathrm{x} \in \mathrm{E}: \mu(\mathrm{x}) \nsubseteq \mathrm{a}\} .
\end{array}
$$

THEOREM: 1.1

Let E be a vector space, $\mu \in L^{E}$ and $\tilde{E}=(\mathrm{E}, \mu)$ then the following statements are equivalent.
(i) \tilde{E} is an L-fuzzy vector subspace.(ii) For all a $\in \mathrm{L}, \tilde{E}_{[\mathrm{a}]}$ is a vector space.
(iii) For all $\mathrm{a} \in \mathrm{J}(\mathrm{L}), \tilde{E}_{[\mathrm{a}]}$ is a vector space. (iv) For all a $\in \mathrm{L}, \tilde{E}^{[a]}$ is a vector space.
(v) For all $\mathrm{a} \in \mathrm{P}(\mathrm{L}), \tilde{E}^{[\mathrm{a]}]}$ is a vector space. (vi) For all a $\in \mathrm{P}(\mathrm{L}), \tilde{E}^{(a)}$ is a vector space.

PROOF:

It is enough if we prove $1 \Leftrightarrow 4$ and $1 \Leftrightarrow 6$
(i) Assume that \tilde{E} is an L-fuzzy vector subspace

Suppose that $\mathrm{x}, \mathrm{y} \in \tilde{E}^{[\mathrm{a}]} \quad$ then $\mathrm{a} \notin \alpha(\mu(\mathrm{x}))$ and $\mathrm{a} \notin \alpha(\mu(\mathrm{y}))$
i.e. $\mathrm{a} \notin \alpha(\mu(\mathrm{x})) \cup \alpha(\mu(\mathrm{y}))=\alpha(\mu(\mathrm{x}) \Lambda \mu(\mathrm{y}))$
then $\alpha(\mu(\mathrm{x}) \Lambda \mu(\mathrm{y})) \supseteq \alpha(\mu(\mathrm{kx}+\mathrm{ly}))$
We have $\mathrm{a} \notin \alpha(\mu(\mathrm{kx}+\mathrm{ly}))$
Hence $\mathrm{kx}+\mathrm{ly} \in \tilde{E}^{[\text {a] }}$
Therefore $\tilde{E}^{[a]}$ is a vector space.
Suppose that for all $\mathrm{a} \in \mathrm{L}, \tilde{E}^{[\mathrm{ab]}}$ is a vector space.
Let $\mathrm{x}, \mathrm{y} \in E$ and $\mathrm{k}, \mathrm{l} \in \mathrm{F}$ then $\mathrm{kx}+\mathrm{ly} \in \tilde{E}^{[\mathrm{a}]}$ if and only if $\mathrm{x} \in \tilde{E}^{[\mathrm{a]}}$ and $\mathrm{y} \in \tilde{E}^{[a]}$
We have $\mu(\mathrm{kx}+\mathrm{ly})=\Lambda\left(\mathrm{a} \Lambda \tilde{E}^{[\mathrm{a}]}\right)(\mathrm{kx}+\mathrm{ly})$

$$
\begin{aligned}
& \mathrm{a} \in \mathrm{~L} \\
= & \Lambda\left(\mathrm{aV}\left(\tilde{E}^{[\mathrm{a]}}(\mathrm{x}) \Lambda \tilde{E}^{[\mathrm{a]}}(\mathrm{y})\right)\right. \\
= & \left(\Lambda\left(\mathrm{aV}\left(\tilde{E}^{[\mathrm{ab}}(\mathrm{x})\right)\right) \Lambda\left(\mathrm{aV}\left(\tilde{E}^{[\mathrm{a]}}(\mathrm{x})\right)\right)\right) \\
& \mathrm{a} \in \mathrm{~L} \\
= & \mu(\mathrm{x}) \Lambda \mu(\mathrm{y})
\end{aligned}
$$

Therefore \tilde{E} is an L-fuzzy vector subspace.
Hence $1 \Leftrightarrow 4$
(ii) Suppose that $\mathrm{x}, \mathrm{y} \in \tilde{E}^{(\mathrm{a})}$ then $\mu(\mathrm{x}) \nsubseteq \mathrm{a}$ and $\mu(\mathrm{y}) \nsubseteq \mathrm{a}$

Since $\mathrm{a} \in \mathrm{P}(\mathrm{L})$ then $\mu(\mathrm{x}) \Lambda \mu(\mathrm{y}) \nsubseteq \mathrm{a} \quad$ (Since $\tilde{E}=(\mathrm{E}, \mu)$ is an LFVS)
That is $\mu(\mathrm{kx}+\mathrm{ly}) \nsubseteq \mathrm{a}$
Implies $\mathrm{kx}+\mathrm{ly} \in \tilde{E}^{(\mathrm{a})}$
Therefore $\tilde{E}^{(a)}$ is a vector space.
Assume $\mathrm{x}, \mathrm{y} \in \mathrm{E}$ and $\mathrm{k}, \mathrm{l} \in \mathrm{F}$ then
$\mathrm{kx}+\mathrm{ly} \in \tilde{E}^{(\mathrm{a})}$ if and only if $\mathrm{x} \in \tilde{E}^{(\mathrm{a})}$ and $\mathrm{y} \in \tilde{E}^{(\mathrm{a})}$ (Since $\tilde{E}^{(\mathrm{a})}$ is a vector space)
We have $\mu(\mathrm{kx}+\mathrm{ly})=\Lambda \quad\left(\mathrm{aV} \tilde{E}^{(\mathrm{a})}\right)(\mathrm{kx}+\mathrm{ly})$ $\mathrm{a} \in \mathrm{P}(\mathrm{L})$

$$
\begin{aligned}
& \left.=\wedge_{\mathrm{a} \in \mathrm{P}(\mathrm{~L})}\left(\mathrm{aV} \tilde{E}^{(\mathrm{a})}(\mathrm{x}) \Lambda \tilde{E}^{(\mathrm{a})}(\mathrm{y})\right)\right) \\
& \left.=\underset{\mathrm{a} \in \mathrm{P}(\mathrm{~L})}{\wedge_{\mathrm{a}}}\left(\mathrm{aV} \tilde{E}^{(\mathrm{a})}(\mathrm{x})\right)\right) \Lambda_{\mathrm{a} \in \mathrm{P}(\mathrm{~L})}^{\left.\Lambda\left(\mathrm{aV} \tilde{E}^{(\mathrm{a})}(\mathrm{y})\right)\right)} \\
& =\mu(\mathrm{x}) \Lambda \mu(\mathrm{y})
\end{aligned}
$$

Therefore \tilde{E} is an L-fuzzy vector subspace. Therefore $1 \Leftrightarrow 6$
Hence the Theorem.
THEOREM: 1.2
Let V be a vector space, $\mu: E \rightarrow \mathrm{~L}$ is a map and for all $\mathrm{a}, \mathrm{b} \in \mathrm{L}, \beta(\mathrm{a} \Lambda \mathrm{b})=\beta(\mathrm{a}) \cap \beta(\mathrm{b})$ then the following statements are equivalent:
(1) \tilde{E} is an L-fuzzy vector subspace. (2) For all a $\in \mathrm{L}, \tilde{E}_{(\mathrm{a})}$ is a vector space.

PROOF:

Assume \tilde{E} is an L-fuzzy vector subspace.
Suppose that $\mathrm{x}, \mathrm{y} \in \tilde{E}_{(\mathrm{a})}$ then $\mathrm{a} \in \beta(\mu(\mathrm{x}))$ and $\mathrm{a} \in \beta(\mu(\mathrm{y}))$
i.e $\mathrm{a} \in \beta(\mu(\mathrm{x})) \cap \beta(\mu(\mathrm{y}))$

Since for all a,b $\in \mathrm{L}, \beta(\mathrm{a} \Lambda \mathrm{b})=\beta(\mathrm{a}) \cap \beta(\mathrm{b})$ and \tilde{E} is an L-fuzzy vector subspace
i.e $\mathrm{a} \in \beta(\mu(\mathrm{x}) \Lambda \mu(\mathrm{y})) \subseteq \beta(\mu(\mathrm{ax}+\mathrm{by}))$
\Rightarrow ax+by $\in \tilde{E}^{(a)}$
Therefore $\tilde{E}_{(\mathrm{a})}$ is a vector space.
Next assume that for all a $\in \mathrm{L}, \widetilde{E}_{(\mathrm{a})}$ is a vector space .
Let $\mathrm{x}, \mathrm{y} \in \mathrm{E}$ and $\mathrm{k}, \mathrm{l} \in \mathrm{F}$ then $\mathrm{kx}+\mathrm{ly} \in \tilde{E}_{(\mathrm{a})}$ if and only if $\mathrm{x} \in \tilde{E}_{(\mathrm{a})}$ and $\mathrm{y} \in \tilde{E}_{(\mathrm{a})} \quad$ (Since $\tilde{E}_{(\mathrm{a})}$ is a vector space)
We have $\mu(\mathrm{kx}+\mathrm{ly}) \underset{\mathrm{a} \in \mathrm{L}}{=\mathrm{V}}\left(\mathrm{a} \wedge \tilde{E}_{(\mathrm{a})}\right)(\mathrm{kx}+\mathrm{ly})$

$$
\begin{aligned}
& =\vee\left(\mathrm{a} \wedge\left(\tilde{E}_{(\mathrm{a})}(\mathrm{x}) \Lambda \tilde{E}^{(\mathrm{a})}(\mathrm{y})\right)\right) \\
& a \in L \\
& =\left(\mathrm { V } (\mathrm { a } \wedge (\tilde { E } _ { (\mathrm { a }) } (\mathrm { x }))) \Lambda \left(\mathrm { V } \left(\mathrm{a} \wedge\left(\tilde{E}_{(\mathrm{a})}(\mathrm{y})\right)\right.\right.\right. \\
& a \in L \quad a \in L \\
& =\mu(\mathrm{x}) \Lambda \mu(\mathrm{y})
\end{aligned}
$$

Therefore \tilde{E} is an L-fuzzy vector subspace.
Therefore the above two statements are equivalent.

DEFINITION 1.2

Let $\widetilde{E_{1}}=\left(\mathrm{E}, \mu_{1}\right)$ and $\widetilde{E_{2}}=\left(\mathrm{E}, \mu_{2}\right)$ be two fuzzy vector subspaces on E . The intersection of $\widetilde{E_{1}}$ and $\widetilde{E_{2}}$ is defined as
$\widetilde{E_{1}} \cap \widetilde{E_{2}}=\left(\mathrm{E}, \mu_{1} \wedge \mu_{2}\right)$ and the sum of $\widetilde{E_{1}}$ and $\widetilde{E_{2}}$ is defined as $\widetilde{E_{1}}+\widetilde{E_{2}}=\left(\mathrm{E}, \mu_{1}+\mu_{2}\right)$
Where $\mu_{1}+\mu_{2}$ is defined as for all $x \in E,\left(\mu_{1}+\mu_{2}\right)(x)=V\left(\mu_{1}\left(x_{1}\right) \wedge \mu_{2}\left(x_{2}\right)\right)$

$$
\begin{aligned}
& x=x_{1}+x_{2} \\
& =V\left(\mu_{1}\left(x_{1}\right) \wedge \mu_{2}\left(x-x_{1}\right)\right) . \\
& x_{1} \in E
\end{aligned}
$$

DEFINITION 1.3

Let $\widetilde{E_{1}}=\left(\mathrm{E}, \mu_{1}\right)$ and $\widetilde{E_{2}}=\left(\mathrm{E}, \mu_{2}\right)$ be two members on LFVS and $\mathrm{E}=\mathrm{E}_{1} \oplus \mathrm{E}_{2}$ be the direct sum of $\widetilde{E_{1}}$ and $\widetilde{E_{2}}$ defined as $\mathrm{E}_{1} \oplus \mathrm{E}_{2}=(\mathrm{E}$, $\mu_{1} \oplus \mu_{2}$) where $\mu_{1} \oplus \mu_{2}$ is defined as for all $x \in E, x=x_{1} \oplus x_{2}, x_{i} \in E_{i}, i=1,2$

$$
\left(\mu_{1} \oplus \mu_{2}\right)(x)=\left(\mu_{1} \oplus \mu_{2}\right)\left(x_{1} \oplus x_{2}\right)=\mu_{1}\left(x_{1}\right) \wedge \mu_{2}\left(x_{2}\right) .
$$

THEOREM: 1.3

Let $\widetilde{E_{1}}=\left(\mathrm{E}, \mu_{1}\right)$ and $\widetilde{E_{2}}=\left(\mathrm{E}, \mu_{2}\right)$ be two members on LFVS on E we have
(i) $\widetilde{E_{1}} \cap \widetilde{E_{2}}$ is a member of LFVS on E. (ii) $\widetilde{E_{1}}+\widetilde{E_{2}}$ is a member of LFVS on E.

PROOF:

Given $\widetilde{E_{1}}$ and $\widetilde{E_{2}}$ be two members on LFVS then $\mu_{1}(\mathrm{kx}+\mathrm{ly}) \geq \mu_{1}(\mathrm{x}) \wedge \mu_{1}(\mathrm{y})$ and $\mu_{2}(\mathrm{kx}+\mathrm{ly}) \geq \mu_{2}(\mathrm{x}) \wedge \mu_{2}(\mathrm{y})$
To prove $\widetilde{E_{1}} \cap \widetilde{E_{2}}$ is a member of LFVS on E
$\widetilde{E_{1}} \cap \widetilde{E_{2}}=\left(\mathrm{E}, \mu_{1} \wedge \mu_{2}\right) \quad$ (By definition 3.2)
Consider ($\left.\mathrm{E}, \mu_{1} \wedge \mu_{2}\right)=\mu_{1} \wedge \mu_{2}(\mathrm{kx}+\mathrm{ly})$

$$
\begin{aligned}
& =\mu_{1}(\mathrm{kx}+\mathrm{ly}) \wedge \mu_{2}(\mathrm{kx}+\mathrm{ly}) \\
& \geq\left(\mu_{1}(\mathrm{x}) \wedge \mu_{1}(\mathrm{y}) \wedge \mu_{2}(\mathrm{x}) \wedge \mu_{2}(\mathrm{y})\right)
\end{aligned}
$$

Therefore $\widetilde{E_{1}} \cap \widetilde{E_{2}}$ is a member of LFVS on E.
Similarly we can prove $\widetilde{E_{1}}+\widetilde{E_{2}}$ is also a member of LFVS on E.

THEOREM: 1.4

Let $\widetilde{E_{1}}=\left(\mathrm{E}, \mu_{1}\right)$ and $\widetilde{E_{2}}=\left(\mathrm{E}, \mu_{2}\right)$ be two members on LFVS on E. Suppose that for any a,b \in L, we have
$\beta(\mathrm{a} \Lambda \mathrm{b})=\beta(\mathrm{a}$
a) $\cap \beta\left(\right.$ b) then $\quad(1)\left(\widetilde{E_{1}} \cap \widetilde{E_{2}}\right)_{(\mathrm{a})}=\left(\widetilde{E_{1}}\right)_{(\text {a })} \cap\left(\widetilde{E_{2}}\right)_{(\mathrm{a})}$
(2) $\left(\widetilde{E_{1}} \cap \widetilde{E_{2}}\right)_{(\text {a) })}=\left(\widetilde{E_{1}}\right)_{(\text {a) }} \cap\left(\widetilde{E_{2}}\right)_{(\mathrm{a})}$.

2.FUZZY DIMENSION OF L-FUZY VECTOR SUBSPACES

DEFINITION 2.1

Let $\mathbb{N}(L)$ be the family of L-fuzzy natural number. The map $\operatorname{dim}: L F V S \rightarrow \mathbb{N}(L)$ is
defined by $\operatorname{dim} \tilde{E}(\mathrm{n})=\vee\left(\mathrm{a} \Lambda \operatorname{dim} \widetilde{E}_{[\mathrm{a}]}\right)_{(\mathrm{n})}$ $a \in L$
is called the L-fuzzy dimensional function of the L-fuzzy vector subspace \tilde{E}, it is an fuzzy natural number.
Also $\operatorname{dim} \tilde{E}(\mathrm{n})=\vee \quad\left\{\mathrm{a} \in \mathrm{L}: \operatorname{dim} \tilde{E}_{[\mathrm{a}]} \geq \mathrm{n}\right\}$.

THEOREM 2.1

Let $\widetilde{\mathrm{E} 1}=\left(\mathrm{E}, \mu_{1}\right)$ and $\widetilde{\mathrm{E} 2}=\left(\mathrm{E}, \mu_{2}\right)$ be two L-fuzzy vector subspaces then the following equalities holds $\operatorname{dim}(\widetilde{\mathrm{E} 1}+\widetilde{\mathrm{E} 2})+\operatorname{dim}(\widetilde{\mathrm{E} 1} \cap \widetilde{\mathrm{E} 2})=\operatorname{dim} \widetilde{\mathrm{E} 1}+\operatorname{dim} \widetilde{\mathrm{E} 2}$

PROOF:

Given $\widetilde{\mathrm{E} 1}$ and $\widetilde{\mathrm{E} 2}$ be two L-fuzzy vector subspaces then the sum of $\widetilde{\mathrm{E} 1}$ and $\widetilde{\mathrm{E} 2}$ be denoted by $\widetilde{E_{1}}+\widetilde{E_{2}}$

$$
\begin{aligned}
& (\operatorname{dim}(\widetilde{\mathrm{E} 1}+\widetilde{\mathrm{E} 2})+\operatorname{dim}(\widetilde{\mathrm{E} 1} \cap \widetilde{\mathrm{E} 2}))^{(\mathrm{a})}=(\operatorname{dim}(\widetilde{\mathrm{E} 1}+\widetilde{\mathrm{E} 2}))^{(\mathrm{a})}+(\operatorname{dim}(\widetilde{\mathrm{E} 1} \cap \widetilde{\mathrm{E} 2}))^{(\mathrm{a})} \\
& =\operatorname{dim}(\widetilde{\mathrm{E} 1}+\widetilde{\mathrm{E} 2})^{(\mathrm{a})}+\left(\operatorname{dim}(\widetilde{\mathrm{E} 1} \cap \widetilde{\mathrm{E} 2})^{(\mathrm{a})}\right. \\
& =\operatorname{dim}\left(\widetilde{\mathrm{E}}^{(\mathrm{a})}+\widetilde{\mathrm{E} 2}^{(\mathrm{a})}\right)+\operatorname{dim}\left({\widetilde{\mathrm{E}} 1^{(\mathrm{a})}}_{\mathrm{C}} \widetilde{\mathrm{E} 2}^{(\mathrm{a})}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{dim} \widetilde{\mathrm{E} 1}{ }^{(\mathrm{a})}+\operatorname{dim} \widetilde{\mathrm{E} 2}{ }^{(\mathrm{a})}
\end{aligned}
$$

Therefore $\operatorname{dim}(\widetilde{E 1}+\widetilde{\mathrm{E} 2})+\operatorname{dim}(\widetilde{\mathrm{E} 1} \cap \widetilde{\mathrm{E} 2})=\operatorname{dim} \widetilde{\mathrm{E} 1}+\operatorname{dim} \widetilde{\mathrm{E} 2}$
Hence the theorem.

CONCLUSION

In this paper L-fuzzy vector subspace is defined and showed that its dimension is an L-fuzzy natural number. Based on the definitions some properties of crisp vector space s are hold in finite dimensional vector spaces. In particular the equality dim $(\widetilde{\mathrm{E} 1}+\widetilde{\mathrm{E} 2})+\operatorname{dim}(\widetilde{\mathrm{E} 1} \cap \widetilde{\mathrm{E} 2})=\operatorname{dim} \widetilde{\mathrm{E} 1}+\operatorname{dim} \widetilde{\mathrm{E} 2}$ holds without any restricted conditions.

REFERENCE

[1] Katsaras, A.K. and Liu, D.B. (1977) Fuzzy Vector Spaces and Fuzzy Topological VectorSpaces. Journal of Mathematical Analysis and Applications , 58, 135-146.
[2] Lubczonok, G. and Murali, V. (2002) On Flags and Fuzzy Subspaces of Vector Spaces.Fuzzy Sets and Systems, 125, 201207.
[3] Abdukhalikov, K.S., Tulenbaev, M.S. and Umirbarv, U.U. (1994) On Fuzzy Bases of VectorSpaces. Fuzzy Sets and Systems, 63, 201-206.
[4] Abdukhalikov, K.S. (1996) The Dual of a Fuzzy Subspace. Fuzzy Sets and Systems , 82, 375-381.
[5] Lubczonok, P. (1990) Fuzzy Vector Spaces. Fuzzy Sets and Systems, 38, 329-343.
[6] Lowen, R. (1980) Convex Fuzzy Sets. Fuzzy Sets and Systems , 3, 291-310.
[7] Shi, F.G. and Huang, C.E. (2010) Fuzzy Bases and the Fuzzy Dimension of Fuzzy VectorSpaces. Mathematical Communications , 15, 303-310.
[8] Gierz, G., et al . (2003) Continuous Lattices and Domains. Encyclopedia of Mathematics andits Applications, Cambridge University Press, Cambridge.
[9] Dwinger, P. (1982) Characterizations of the Complete Homomorphic Images of a CompletelyDistributive Complete Lattice I. Indagationes Mathematicae (Proceedings), 85, 403-414.
[10] Wang, G.-J. (1992) Theory of Topological Molecular Lattices. Fuzzy Sets and Systems , 47,351-376.
[11] Huang, H.-L. and Shi, F.-G. (2008) L-Fuzzy Numbers and Their Properties. InformationSciences , 178, 1141-1151.
[12] Shi, F.-G. (2000) L-Fuzzy Relation and L-Fuzzy Subgroup. Journal of Fuzzy Mathematics, 8,491-499.
[13] Negoita, C.V. and Ralescu, D.A. (1975) Applications of Fuzzy Sets to Systems Analysis, InterdisciplinarySystems Research Series 11, Birkhaeuser, Basel.
[14] Shi, F.-G. (1995) Theory of L β-Nested Sets and L α-Nested Sets and Its Applications. Fuzzy Systems and Mathematics, 4, 65-72. (In Chinese)
[15] Shi, F.-G. (1996) L-Fuzzy Sets and Prime Element Nested Sets. Journal of MathematicalResearch and Exposition, 16, 398402. (In Chinese)
[16] Shi, F.-G. (1996) Theory of Molecular Nested Sets and Its Applications. Journal of YantaiTeachers University , 1, 33-36. (In Chinese)
[17] Shi, F.-G. (2009) A New Approach to the Fuzzification of Matroids. Fuzzy Sets and Sys

