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Abstract- This paper deals with an optimal tuning of Proportional Integral Derivative (PID) controller of a plant using
Bacteria Foraging Optimization Algorithm (BFOA). As constancy of frequency and voltage are important factors in
determining the quality of power supply. PID is a feedback based controller which gets the error value and calculates the
output based on the characteristics of the error it is widely used in plants as it is simple and gives good result. The
robustness of the system is also examined by applying variable load changes to a system instead of fixed step change in
load. The simulation results of the proposed BFOA tuned PID controller is presented. The analysis clearly reveals that the
transient performances and the robustness are much improved with the proposed approach over others.

IndexTerms—Bacteria foraging, PID controller, ITAE, ITSE, ISE, IAE.

. INTRODUCTION

The Proportional-Integral-Derivative (PID) controller has been proved the most popular controller of this century for its
remarkable effectiveness, easiness of implementation and vast applicability. But it is also hard to tune the PID controller. A number
of tuning methods are done manually which are difficult and time consuming. For using PID controller efficiently, the optimal
tuning of its parameters has become a significant research area. Optimization problems have been resolved with the aid of
numerous techniques. Today’s, an alternative approach to the traditional methods for operations research, meta-heuristic methods
are implanted to simplify optimization difficulties.

Nature Inspired strategies are those, which are inspired by natural and biological events for example, immune system, foraging
behavior of ants and other insects. Swarms can be considered as any collection of interacting agents or individuals and
implemented strategy is inspired by intelligent behavior of insects .

Bacteria Foraging Optimization (BFO) Algorithm has been applied for tuning the subjected parameters of PID controller. This
tuning method based on research of foraging behavior of E.colli bacteria proposed by Kevin M.Passino and Liu exploits a bacterial
foraging and swarming behavior. It exhibits linked social foraging process along with distributed non-gradient optimization.
Stochastic optimization approaches are needed to deal with more complicated open loop unstable systems . Hence the tuning
objectives and parameter variations can be directly incorporated to find the optimum PID controller parameter values.

I1. TUNING OF PID CONTROLLER

The PID controller calculation involves three separate control parameters, i.e. proportional, integral and derivative values .The
proportional value determines the reaction of the current error, the integral value determines the reaction based on the sum of recent
errors and derivative value determines the reaction based on the rate at which the error has been changing and the weighted sum of
these three actions is used to adjust the process via the final control element.

The block diagram of a control system with unity feedback employing Soft computing PID control action is shown in Figure-1.
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Fig 1: PID Tuning
The mathematical representation of PID control is given in (1).
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A. Classical Techniques

Classical techniques make certain assumptions about the plant and the desired output and try to obtain analytically, or
graphically some feature of the process that is then used to decide the controller settings. These techniques are computationally
very fast and simple to implement, and are good as a first iteration. But due to the assumptions made, the controller settings
usually do not give the desired results directly and further tuning is required. A few classical techniques have been reviewed in
this paper.

B. Computational or Optimization Techniques

These are techniques which are usually used for data modeling and optimization of a cost function, and have been used in
PID tuning. Few examples are neural networks (computational models to simulate complex systems), genetic algorithm and
differential evolution. The optimization techniques require a cost function they try to minimize. There are four types of cost
functions used commonly,

e Integral Absolute Error

IAE = | |e(t)|
J

e Integral Square Error
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e Integral Time Absolute Error
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0
e Integral Time Square Error

T
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Computational models are used for self tuning or auto tuning of PID controllers. Self tuning of PID controllers essentially sets the
PID parameters and also models the process by using some computational model and compares the outputs to see if there are any
process variations, in which case the PID parameters are reset to give the desired response. The existent types of adaptive
techniques are classified based on the fact that if the process dynamics are varying [3], then the controller should compensate
these variations by adapting its parameters. There are two types of process dynamics variations, predictable and unpredictable.
The predictable ones are typically caused by nonlinearities and can be handled using a gain schedule, which means that the
controller parameters are found for different operating conditions with an auto-tuning procedure that is employed thereafter to
build a schedule. Different techniques have been used to replace the gain schedule mentioned above.

I1l. BACTERIAL FORAGING ALGORITHM (BFA)
Recently, bacterial foraging algorithm (BFA) has emerged as a powerful technique for the solving optimization problems. BFA
mimics the foraging strategy of E. coli bacteria which try to maximize the energy intake per unit time.

The E. coli bacterium has a plasma membrane, cell wall, and capsule that contains the cytoplasm and nucleoid (Figure 1). The
pili (singular, pilus) are used for a type of gene transfer to other E. coli bacteria, and flagella (singular, flagellum) are used for
locomotion . The cell is about 1 ymin diameter and 2 pum in length. The E. coli cell only weighs about 1 picogram and is about
70% water. Salmonella typhimurium is a similar type of bacterium .
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Fig 2: Bacterial foraging E.Coli

From the very early days it has drawn attention of researchers due to its effectiveness in the optimization domain. So as to
improve its performance, a large number of modifications have already been undertaken. The bacterial foraging system consists
of four principal namely chemotaxis, swarming, reproduction and elimination-dispersal. A brief description of each of these
processes along with the pseudo-code of the complete algorithm is described below.

Chemotaxis: This process simulates the movement of an E.coli cell through swimming and tumbling via flagella. Biologically an
E.coli bacterium can move in two different ways. It can swim for a period of time in the same direction or it may tumble, and
alternate between these two modes of operation for the entire lifetime. Suppose 6'(j, k, [)represents it" bacterium at
jt"chemotactic, k" reproductive and 1" elimination-dispersal step. C(i) is the size of the step taken in the random direction
specified by the tumble (run length unit). Then in computational chemotaxis the movement of the bacterium may be represented

by
AQ)

VAL + A
Where A indicates a vector in the random direction whose elements lie in [-1, 1].

Swarming: An interesting group behavior has been observed where a group of E.coli cells arrange themselves in a traveling
ring by moving up the nutrient gradient when placed amidst a semisolid matrix with a single nutrient chemoeffecter. The
cells, when stimulated by a high level of succinate, release an attractant aspertate, which helps them to aggregate into groups
and thus move as concentric patterns of swarms with high bacterial density. The cell-to-cell signaling in E. coli swarm may be
represented by the following function.
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where J¢ (H,P(j, k, l)) is the objective function value to be added to the actual objective function (to be minimized)to present a
time varying objective function, S is the total number of bacteria, p is the number of variables to be optimized, which are present

in each bacteriumand 8 = (91, 0,, Hp)tis a point in the p dimensional search domain.

Reproduction: The least healthy bacteria eventually die while each of the healthier bacteria (those yielding lower value of the
objective function) asexually split into two bacteria, which are then placed in the same location. This keeps the swarm size
constant.

Elimination and Dispersal: Gradual or sudden changes in the local environment where a bacterium population lives may occur
due to various reasons e.g. a significant local rise of temperature may kill a group of bacteria that are currently in a region with a
high concentration of nutrient gradients. Events can take place in such a fashion that all the bacteria in a region are killed or a
group is dispersed into a new location. Some guidelines for BFA Parameter Choices are

Size of population ‘S’: Increasing S can significantly increase the computational complexity of the algorithm. However, for
larger values of S, it is more likely at least some bacteria near an optimum point should be started, and over time, it is then more
likely that many bacterium will be in that region, due to either chemotaxis or reproduction.
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Length of chemotactic step ‘C(i)’: If C(i) are too large, then if the optimum value lies in a valley with steep edges, the search
will tend to jump out of the valley, or it may simply miss possible local minima by swimming through them without stopping. On
the other hand, if C(i) are too small, convergence can be slow, but if the search finds a local minimum it will typically not deviate
too far from it. c(i) is a sort of a “step size” for the algorithm

Chemotactic step ‘Nc’: If the size of Nc is chosen to be too short, the algorithm will generally rely more on luck and
reproduction, and in some cases, it could more easily get trapped in a local minimum (premature convergence). Ns creates a bias
in the random walk (which would not occur if Ns = 0), with large values tending to bias the walk more in the direction of
climbing down the hill.

Reproduction number ‘Nre’: If Nre is too small, the algorithm may converge prematurely; however, larger values of Nre clearly
increase computational complexity.

Elimination and dispersal number ‘Ned’: A low value for Ned dictates that the algorithm will not rely on random elimination-
dispersal events to try to find favorable regions. A high value increases computational complexity but allows the bacteria to look
in more regions to find good nutrient concentrations. Clearly, if ped is large, the algorithm can degrade to random exhaustive
search. If, however, it is chosen appropriately, it can help the algorithm jump out of local optima and into a global optimum.
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Fig. 3 Flowchart of BFA

Parameters defining cell-to-cell attractant functions ‘J..’:

If the attractant width is high and very deep, the cells will have a strong tendency to swarm (they may even avoid going after
nutrients and favor swarming). On the other hand, if the attractant width is small and the depth shallow, there will be little
tendency to swarm and each cell will search on its own Social versus independent foraging is then dictated by the balance
between the strengths of the cell-to-cell attractant signals and nutrient concentrations.
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IV. PROPOSED ALGORITHM FOR THE IMPLEMENTATION OF THE BFOA

We have used bacterial forging optimization algorithm for segmention of the image. This algorithm shows how the bacterial based
theory is used to detect the image. Natural selection tends to eliminate animals with poor “foraging strategies” (methods for
locating, handling, and ingesting food) and favor the propagation of genes of those animals that have successful foraging strategies
since they are more likely to enjoy reproductive success (they obtain enough food to enable them to reproduce). After many
generations, poor foraging strategies are either eliminated or shaped into good ones (redesigned). Logically, such evolutionary
principles have led scientists in the field of “foraging theory” to hypothesize that it is appropriate to model the activity of foraging
as an optimization process:
Steps:

initialize Parameters: p, S, Nc, Ns, Nre and C (i),i=1, 2... S

Where,

p = Dimension of search space

S = Number of bacteria in the population

Nc = Number of chemotaxis steps

Ns= Number of swimming steps

Nre = Number of reproduction steps

C (i) = Step size taken in the random direction specified by the tumble

J (i, j, k) = Fitness value or cost of i-th bacteria in the j-th chemotaxis and k-th reproduction steps

0 (i, j, k)= Position vector of i-th bacterium in j-th chemotactic step and k-th reproduction steps

Jbest (j, k) = Fitness of best position in the j-th chemotaxis and k-th reproduction steps

Jglobal= Fitness value or cost of the global best position in the entire search space

Step 1: Update the following parameters: J (i, j, k), Jbest (j, k) and Jglobal= Jbest (j, k)
Step 2: Reproduction Loop: k = k+1

Step 3: Chemotaxis loop: j = j+1

a) Compute fitness function J (i, j, k) fori=1, 2, 3...S

b) Update Jbest (j, k).

¢) Tumble: Generate a random vector A(i) €Rp with each

element Am (i) m = 1, 2...p, a random

d) Computeqfori=1,2........... S

e) Swim

i) Let m = 0 (counter for swim length)

ii) While m < Ns (if have not climbed down too long.

e Let m=m+l

» Compute fitness function J (i, j+1, k) fori=1,2... S

* Update Jbest (j+1, k)

« If Jbest (j+1,k)<Jbest (j, k) (if doing better), Jbest (j, k) = Jbest (j+1, k) Compute 0 for i =1, 2...S [Synchronous
position updation] Use this 8 (i, j +1, k) to compute the new J (i, j+1, k)

* Else, let m = Ns. This is the end of the while statement Sub Step f) Mutation Operator Compute 6 fori=1,2....S
[Synchronous position updation by mutation operator]

Step 4: If j < Nc, go to step 3. In this case, continue chemotaxis since the life of bacteria is not over.

Step 5: Reproductions: The Sr=S/2 bacteria with the highest cost function values die and other Sr bacteria with the best values
split. Update Jglobal from Jbest (j, k).

Step 6: If k < Nre, go to Step 2 otherwise end.

V. APPLICATION AREAS OF BFOA

Automatic circle detection using BFOA.

Automatic generation control using BFO.

Calculate resonant frequency using BFO

Economic emission load dispatch through fuzzy BFOA.
Image compression using BFOA based ANN.

SARE I A o
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V1. RESULT AND DISCUSSION
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Fig. 4 : value of gain by BFO using PID Technique

As the figure 4 shows above that manipulating the values of gain by BFO PID Technique it gives the required results. In BFO
there are two important factor i.e. alpha and beta which is the base of the gain values. Alpha and Beta are the two constant terms
which provides the system stability. After the execution of algorithm the required values of proportional gain , integral gain and
derivative gain are saved in workspace and from the work space the required values are taken p by the PID controller.

The response in Fig.5 shows that in BFO when the number of iteration is 50 and manipulating the value of beta and by keeping
the value of alpha at 10 i.e. constant from that all the factors like maximum overshoot, rise time, settling time will be determined.

Magnitude{pu)

4 i 4 | |
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Time{sec)

Fig 5 : For BFO when n =50 alpha = 10 and Beta = 5,10,15,20

The above figure shows that when n=50 and keeping the value of Alpha constant i.e. 10 and by varying the value of Beta from 5
to 20 (in 4 interval) and by applying PSO algorithm it will gives the value of Kp= 0.8809, 0.8403 0.8747 and 0.9762 and Kd =
0.6724, 0.7790, 0.8018 and 0.4032. It concludes that when Beta = 20 then the maximum overshoot as well as settling time is
greater than allthe other values of Beta, and the rise time when Beta= 15 is greater than all the values of Beta.
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Controlier Output for BFO When n = 200 Alpha = 10 and Beta = 510,15 20
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Fig 6 : Controller output response for BfO when n =50 alpha = 10 and Beta = 5,10,15,20 The above figure shows

that controller output when n=50 and applying BFO algorithm, by keeping the value of alpha constant at 10 and by varying the
value of beta from 5 to 20 (in 4 interval) and by applying BFO algorithm it will gives the value of Kp and Kd and the fluctuation
in the output of controller is totally depends upon the value of Alpha and Beta The Table shows that by maintaining the value of
beta and regulating the value of alpha it gives the required result of Kp, Ki and Kd

S.No | Generation | Alpha | Beta | Kp Ki Kd Mp% | Ts Tr
1 200 10 5 0.1694 | 0 | 0.5522 0 21.74 | 11.27
2 200 10 10 | 0.812 0 |0.7876 | 10.4471 | 7.10 | 1.76
3 200 10 15 | 0.5489 0 |0.7454 | 4.9755 | 8.195 | 2.396
4 200 10 20 | 0.920 0 |0.9178 0 42.75 | 22.95

VII. CONCLUSION
The designe of PID BFA technique that was explored as a candidate to optimally tune the PID gains represents an optimization
technique mimic to the search of food for the bacteria. This is a promising technique that can be used in complex problems. From
the simulation results, the system, when driven by such BFA-tuned PIDs, shows a good performance during regulation, reference
tracking and parameters change tests.P1D controllers using BFO based optimization have less overshoot

REFERENCES

[1] Jhankal, N.K., Adhyaru, D., “Bacterial foraging optimization algorithm: A derivative free technique,” presented at the 2nd
International Conference on current in technology, Ahmedabad, India, 8-10, Dec.2011.

[2] G. Kevin Passino,”Biomimicry of Bacterial Foraging for Distributed Optimization and Control,” IEEE Control Systems
Magazine, June 2002.

[3] V. Fabian, “Simulated annealing simulated,” Computers math Applic. Vol. 33, no. 1/2, pp. 81-94, 1997.

[4] Stephens and J. Krebs, Foraging Theory. Princeton, NJ: Princeton univ. Press, 1986.

[5] W. O’Brien, H. Browman, and B. Evans, “Search strategies of foraging animals,” Amer. Scientist,” vol. 78, pp. 152-160, Mar
/Apr. 1990.

[6] H. Berg, Random Walks in Biology. Princeton, NJ: Princeton Univ. Press, 1993.

[7] D. De Rosier, “The turn of the screw: The bacterial flagellar motor,” Cell, vol. 93, pp. 17-20, 1998.

[8] G. Lowe, M. Meister, and H. Berg, “Rapid rotation of flagellar bundles in swimming bacteria,” Nature, vol. 325, pp. 637-640,
Oct. 1987.

[9] Swagatam Das, Sambarta Dasgupta, Arijit Biswas, Ajith Abraham,” On Stability of the Chemotactic Dynamics in Bacterial-
Foraging Optimization Algorithm, >’ IEEE Trans. Syst.,Man, Cybernet-Part A: systems and humans, vol. 39, no. 3, may 2009.

[10] B. Sumanbabu, S. Mishra, B.K. Panigrahi, and G.K. Venayagamoorthy, “Robust tuning of modern power system stabilizers
using bacterial foraging algorithm,” IEEE Congress on Evolutionary Computation, CEC 2007.

[11] D.H. Kim, A. Abraham, and J.H. Cho, “A hybrid genetic algorithm and bacterial foraging approach for global optimization,”
Information Sciences, vol. 177, no. 18, pp. 3918-3937, 2007.

[12] S. Dasgupta, S. Das, A. Abraham, and A. Biswas, “Adaptive computational chemotaxis in bacterial foraging optimization: an
analysis,” IEEE Transactions on Evolutionary Computing, (in press), 2008.

IJISDR1605134 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 729


http://www.ijsdr.org/

ISSN: 2455-2631 © May 2016 IJSDR | Volume 1, Issue 5

[13] R. Allamneni , “Bacterial foraging based channel equalizers,” Master of Technology, Dept. Electronics and Communication
Eng., National Institute of Technology, Rourkela, Orissa, Spain, May-2006.

[14] Mangraj B B, Misra IS and Barisal AK, “Optimizing Included Angle of symmetrical V-Dipoles for Higher Directivity Using
Bacteria Foraging Optimization Algorithm”, PIER B, Vol. 3, 2008, pp. , 295-314

[15] Sastri GSVR, Pattnaik SS, Bajpai OP, Devi S, Sagar CV, Patra PK and Bakwad KM, “Bacterial Foraging Optimization
Technique to Calculate Resonant Frequency of Rectangular Microstrip Antenna”, Int. J.

RF Microwave Computer Aided Eng., Vol. 18, 2008, pp. , 383-388.

[16] Sastri GSVR, Pattnaik SS, Bajpai OP, Devi S and Bakwad KM , “Velocity Modulated Bacterial Foraging Optimization
Technique (VMBFO)”, Applied Soft Computing Journal, Vol. 11 (1), January 2011, pp. 154-165.

[17] Sastri GSVR, Pattnaik SS, Bajpai OP, Devi S, Bakwad KM and Patra PK “Intelligent Bacterial Foraging Optimization
Technique to Calculate Resonant Frequency of RMA”, IMOT, Vol 4(2), March 2009, pp.67-75.

[18] Chen H, Zu Y, and Hu K, “Adaptive Bacterial Foraging Optimization”, Abstracts and Applied Analysis, Vol. 2011, 2011,
pp. 1-27.

[19] Mahmoud KR, “Design Optimization of A Bow-Tie Antenna For 2.45 GHz RFID Readers Using A Hybrid BSO-NM
Algorithm”, PIER 100, 2010, pp. 105-117

[20] Bakwad KM, Pattnaik SS, Sohi BS, Devi S, Panigrahi BK, Sastri GSVR, “Bacterial Foraging Optimization Technique
Cascaded with Adaptive Filter to Enhance Peak Signal to Noise Ratio from Single Image”, IETE Journal of Research, Vol 55 (4),
Jul-Aug 20009.

[21] Passino KM, “Biomimicry of Bacterial Foraging”, IEEE Control System Magzine, Vol. 22, 2002, pp. 52-67.

[22] Datta T, Misra IS, Mangraj BB, Imtiaj S, “Improved Adaptive Bacteria Foraging algorithm in Optimization of Antenna
Array for Faster Convergence”, PIER C, Vol. 1, 2008, pp. 143-157.

[23] Liu W, Chen H, Chen H, and Chen M, “RFID Network Scheduling Using an Adaptive Bacteria Foraging Algorithm”,
Journal of Computer Information Systems (JCIS), Vol. 7(4), 2011, pp. 1238-1245.

[24] Korani W, “ Bacterial Foraging Oriented By Particle Swarm Optimization Strategy for PID Tuning”, GECOO 2008, 12-16
July, 2008, Atlanta, USA, pp. 1823-1826.

[25] Zhang Y, Wu L and Wang S, “ Bacterial Foraging Optimization Based Neural Network for Short term Load Forecasting.

[26] Singh, Mahesh, R. N. Patel, and Rajkumar Jhapte. "Performance comparison of optimized controller tuning techniques for
voltage stability."2016 IEEE First International Conference on Control, Measurement and Instrumentation (CMI). IEEE, 2016.

IJISDR1605134 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 730


http://www.ijsdr.org/

