
ISSN: 2455-2631 © April 2016 IJSDR | Volume 1, Issue 4

IJSDR1604044 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 270

Prevention, Detection and Mitigation of Cross Site

Scripting Attacks in Web Applications

1
Sanket Patel,

2
Priyanka Vishwasrao,

3
Prof. Sakina Shaikh

Master of Computer Application

Sardar Patel Institute of Technology

Mumbai, India

Abstract— With the increasing dependencies on the web

applications for day-to-day activities, users are exposed to

an all time high risk of being affected by cyber attacks.

One of such attack is the Cross Site Scripting (XSS)

attacks that seems to be passive in nature but directly

impacts the experience of the user session. Open Web

Application Security Project (OWASP) and Common

Vulnerabilities and Exposures (CVE) reported Cross-Site

Scripting (XSS) as one of the most serious vulnerabilities

in the web applications. Though many vulnerability

detection approaches have been proposed in the past,

existing detection approaches have the limitations in terms

of false positive and false negative results. This paper

proposed an automated browser mediating approach to

authenticate the scripts on the page and thus mitigating

the XSS vulnerabilities in the web applications.

Keywords— Cross Site Scripting (XSS), Web Application

Security, Pattern Matching, Browser Mediating Approach

I. INTRODUCTION

The loss of privacy is a rising issue among web rights activists

as more and more users sign up to share their lives with the

world. If a major exploit is ever found that allowed anyone to

see anything posted or otherwise told on any media site, it

would have huge repercussions for both the users and the

network's good status. Measures must be taken by social media

developers for their users' sakes to stop the misuse of private

information, take action against the posting of media

containing non-consenting individuals and their own

carelessness in handling user data.

Attacks on institutions like bank would cause heavy

loss to the public as well to the entities holding stake of those

bank, it’s obvious that attackers get attracted to mine of money

which could be a synonym to bank.
Not just big e-commerce websites but also small e-

commerce sites are often the target of attacks, with hackers
taking advantage of companies without the dedicated security
staff and expertise of a company that’s in the top half of the
Fortune 500. And while breaches at smaller companies may not
make the headlines (if they are detected at all), the number of
small ecommerce sites – the long tail – provides a tempting
volume of sites to attack.

Cross-Site Scripting (XSS) attacks are a type of injection,
in which malicious scripts are injected into otherwise trusted
web sites. XSS attacks occur when an attacker uses a web
application to send malicious code, generally in the form of a
browser side script, to a different end user. Inherently, XSS is
different from other types of online attacks wherein there is a

direct attempt to harm the user or the application service.
Whereas, XSS is majorly used to modify the experience of the
end user thereby furnishing an altered version of the web
application instead of the version actually requested by the
user.

Understanding the request-response mechanism

Fig. 1 : Basic workflow of a web application

1. Web pages are written in HTML, Hypertext Markup

Language. A markup language is a computer language
that describes the layout, format and content of a
page. The Web browser renders the page according to
the HTML code. Here goes the client side script for
validations.

2. Web Page is requested through HTTP protocol from
Server where the webpage originally resides. The
server receives the request for a page sent by client.
The browser connects to the server through an IP
Address; the IP address is obtained by translating the
domain name.

3. Web servers respond to a browser’s request for a web
page and deliver it through the internet.

4. This response is then sent to client in form web page
through HTTP response mechanism the response is
sent in html page hence it can be rendered on client.

5. The script present on client side helps to validate the
content sent to client from server also renders it onto
the browser.

On analyzing the above operations in the traditional web

applications, we can highlight a few of the possible channels

that an attacker can exploit. On analyzing the existing

workflow of a web application, one can clearly say that there

are two distinct entities located at a physically separate location

but connected via a communication link which in our case is

the internet. One of the most common way that an exploiter can

opt for is the man-in-the-middle attack. The attacker can

intercept the request from the user, modify the request and

forward the same to the server. The server receives and

processes the request and sends the response to the user. Again,

the attacker may intercept the response, alter the original

message with the forged message and then finally forwards it

ISSN: 2455-2631 © April 2016 IJSDR | Volume 1, Issue 4

IJSDR1604044 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 271

the intended user. Now the user views the forged message and

thus is a victim of an online attack.
XSS can be called as an adaptation of the traditional man-

in-the-middle attack except for the fact that the middleman
resides on the client system itself.

II. CONCEPT

Cross-site scripting (XSS) is a code injection attack that allows

an attacker to execute malicious JavaScript in another user's

browser.

The attacker does not directly target his victim. Instead, he

exploits a vulnerability in a website that the victim visits, in

order to get the website to deliver the malicious JavaScript for

him. To the victim's browser, the malicious JavaScript appears

to be a legitimate part of the website, and the website has thus

acted as an unintentional accomplice to the attacker.

The only way for the attacker to run his malicious

JavaScript in the victim's browser is to inject it into one of the

pages that the victim downloads from the website. This can

happen if the website directly includes user input in its pages,

because the attacker can then insert a string that will be treated

as code by the victim's browser.

In the example, a simple server-side script is used to

display the latest comment on a website. The script assumes

that a comment consists only of text. However, since the user

input is included directly, an attacker could submit this

comment: "<script>...</script>". Any user visiting the page

would now receive the response as When the user's browser

loads the page, it will execute whatever JavaScript code is

contained inside the <script> tags. The attacker has now

succeeded with his attack.
The ability to execute JavaScript in the victim's browser

might not seem particularly malicious. After all, JavaScript
runs in a very restricted environment that has extremely limited
access to the user's files and operating system. In fact, you
could open your browser's JavaScript console right now and
execute any JavaScript you want, and you would be very
unlikely to cause any damage to your computer [5].

However, the possibility of JavaScript being malicious

becomes clearer when you consider the following facts:

 JavaScript has access to some of the user's sensitive

information, such as cookies.

 JavaScript can send HTTP requests with arbitrary

content to arbitrary destinations by using

XMLHttpRequest and other mechanisms.

 JavaScript can make arbitrary modifications to the

HTML of the current page by using DOM

manipulation methods.

III. CLASSIFICATION OF XSS ATTACKS

Cross-site Scripting can be classified into three major

categories [4] —

 Stored XSS

 Reflected XSS

 DOM-based XSS

1. Stored XSS

Stored XSS attacks involves an attacker injecting a

script (referred to as the payload) that is permanently stored

(persisted) on the target application (for instance within a

database). The classic example of stored XSS is a malicious

script inserted by an attacker in a comment field on a blog or in

a forum post.

2. Reflected XSS

In Reflected XSS, the attacker’s payload script has to be part of

the request which is sent to the web server and reflected back

in such a way that the HTTP response includes the payload

from the HTTP request.Using Phishing emails and other social

engineering techniques, the attacker lures the victim to

inadvertently make a request to the server which contains the

XSS payload and ends-up executing the script that gets

reflected and executed inside the browser.

3. DOM- based XSS

DOM-based XSS is an advanced type of XSS attack which is
made possible when the web application’s client side scripts
write user provided data to the Document Object Model
(DOM). The data is subsequently read from the DOM by the
web application and outputted to the browser.

IV. PROPOSED APPROACH

In order to prevent and minimize the impact of an XSS attack,
we propose to safeguard both the server as well as the client. A
persistent XSS is carried on with the intention to harm the
server and indirectly all the clients that the server provides
service to. Whereas a non-persistent XSS attack is directly
intended at the end-user or the client. Following are the
proposed approach that can be used to prevent both the types of
XSS attacks.

A. Persistent XSS Attacks

A major part of data submitted by the client that is persisted

by the server is textual data or multimedia data. To put it in

other words, except for few exceptional cases, there are not

many situations where a user submits an executable content.

Keeping this proposition in mind, we can validate the request

at the browser level itself. Following steps needs to be taken :

1. A client enters the data into a form that will be

submitted to the server.

2. Assuming that the client is infected by an XSS script,

the client request will be tampered by the attacking

script without the knowledge of the client.

3. The request will be prevented by the browser even

before it is submitted to the server. The browser will

do so based on the content of the request message.

a. If the request message contains any

executable content like a javascript, the

request will be cancelled.

b. Else, the request will be treated as a normal

request and will be forward to the server for

processing.

 For exceptional scenario, where there is a need to

submit executable content to the server, following steps may be

taken:

a. The server specifies its intent to accept

executable data in its headers.

b. The client enters the data that may contain

executable script.

c. The browser in this case will skip the

validation of request message and directly

forward the same to the server.

ISSN: 2455-2631 © April 2016 IJSDR | Volume 1, Issue 4

IJSDR1604044 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 272

B. Non-Persistent XSS Attacks

There are situations in which XSS script changes the

content of the server’s response. In such situations, the client is

made to interact with additional content injected by the XSS

script. Many a time such additional content is the javascript

code. These types of attacks are not easy to be detected as the

server is completely unaware of the the injection of a third-

party code into its response. To prevent such attacks following

steps can be taken:

1. On the server-side a descriptor file needs to be

maintained that may be in an XML format. The file

will contain all the list of all the scripts blocks that

may be received in the server response.

2. The descriptor file is sent to the client with the initial

request and then stored in the browser’s cache for the

session.

3. When the browser starts to render the response on the

screen, following steps takes place:

a. Whenever a script block is encountered, the

browser checks for its authenticity in the

descriptor file.

b. If the block is found in the descriptor, it is

rendered on the screen.

c. Else, the block is removed from the

response.

This above approach is feasible for cases where the XSS attack

adds additional scripts to the server response which will be

eventually be ignored by the client browser.

Alternatively, another approach may be adopted wherein the

templatization of the server response needs to be done.

Following are the steps for the same:

1. For every response generated for the request,

minimized version of the DOM structure will be sent

along the response that can only be interpreted by the

browser.

2. As the DOM structure is pre-defined, any kind of

injection or modification in the DOM structure done

by the XSS attack will be identified and eventually be

nullified.

V. LIMITATIONS

The solutions proposed in this paper to prevent XSS attack are

most suitable for web applications where the structure is static

in the long-run. There is also an additional overhead of

maintaining an descriptor file as well as the response template

on the server. Due to the above limitation, the proposed

approach works best with but not limited to web applications

that have high security needs like online banking.

VI. CONCLUSION AND FUTURE WORK

With the increasing dependencies on the web applications

for day-to-day activities, users are exposed to an all time high

risk of being affected by cyber attacks. This paper proposed an

automated browser mediating approach to authenticate the

scripts on the page and thus mitigating the XSS vulnerabilities

in the web applications. The paper proposed two approaches -

descriptor file based approach for preventing persistent XSS

attack and template based approach for preventing non-

persistent XSS attacks.

 The proposed solution has a few overheads in maintaining

additional descriptor and template file. This leads to an

increase in bandwidth requirements for every request. As a

further study in this field, there is a need to find a solution to

minimize the file size and also optimize caching at the browser

level. Also, web applications that have a highly dynamic

structure, i.e. applications that have a fluctuating DOM

structure cannot be prevented from XSS attacks using the

proposed approach. A study needs to be conducted to handle

this exception.

REFERENCES

[1] Mukesh Kumar Gupta, Mahesh Chandra Govind, Girdhari

Singh, Priya Sharma, ―XSSDM: Towards Detection and
Mitigation of Cross-Site Scripting Vulnerabilities in Web
Applications‖, 2015 International Conference on
Advances in Computing, Communications and
Informatics (ICACCI)

[2] Yu Sun, Dake He, ―Model Checking for the Defense
against Cross-site Scripting Attacks‖, 2012 IEEE DOI
10.1109/CSSS.2012.537

[3] Mukesh Kumar Gupta, Mahesh Chandra Govind, Girdhari
Singh, ―Predicting Cross-Site Scripting (XSS) Security
Vulnerabilities in Web Applications‖, 2015 12th
International Joint Conference on Computer Science and
Software Engineering (JCSSE)

[4] ―Types of XSS‖, Acunetix -
http://www.acunetix.com/websitesecurity/xss/

[5] ―Excess XSS :A Comprehensive tutorial on cross site
scripting‖, Excess XSS - http://excess-xss.com/

