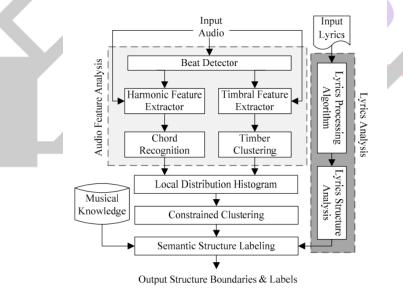
Analysis of Music Based On Multimodal Structure Segmentation of Audio and Lyrics Information

Darshita S. Pathak

Computer Engineering, V.V.P.Engineering College, Rajkot


Abstract - In this paper the approach goes towards combining the audio analysis with method of multimodal structure segmentation with also the most important part of any song that is lyrics. In particular, since lyrics contain rich information about the semantic structure of a song, our approach incorporates lyrics to overcome the existing difficulties associated with large acoustic variation in music .In further, further design a constrained clustering algorithm for music segmentation and evaluate its performance on commercial recordings.

Index Terms - Lyrics, music information retrieval, music, segmentation

I. INTRODUCTION

With understanding the structure of music (e.g. intro, verse, chorus, bridge, and outro) is important as it allows us to divide a song into semantically meaningful segments, within which musical characteristics are relatively consistent. Structure segmentation can serve as a front end processor for music content analysis [1] since it enables a local description of each disparate section rather than a coarse Structure segmentation can also be directly applied to music summarization [4] and thumbnailing [8], by which a user can quickly grasp the key section without listening to the whole song. In view of the fast growth of digital music collection and media playback on portable devices, such applications are indispensable.

Generally speaking, structure segmentation consists of two stages: an audio segmentation stage that divides audio into segments and a semantic labeling stage that labels each segment with a structure type. The difficulty exists because the number of segments is hard to infer from the audio signal, and audio features are not necessarily consistent even within segments of the same structure type due to common acoustic variations such as transposition, ornamentation, or improvisation accuracy of audio segmentation is still low, rare attempts have been made to achieve semantic labeling.

Fig.1 System Architecture

With approach towards this problem, the survey paper based on just theoretical concept we have proposed the system where with the help of analysis of lyrics and audio content the music can be literature and its behavior with the help of its chorus and segment based it can be analyzed easily. First, it is relatively easier to infer the number of segments from the Lyrics structure and thereby avoid over-segmentation and Under-segmentation that often occurs in previous audio-based Methods. Second, as the lyrics of the same structure type are mostly similar despite of acoustic variations, the computation of segment similarity becomes more reliable. Third, accurate semantic labeling is possible with the high-level semantic cues provided by the lyrics.

II. PREVIOUS WORK

Recent research on structure analysis and segmentation of music can roughly be divided into two categories: similaritymatrix-based approach and clustering-based approach. In the former approach [2]–[4], [14], pair-wise similarity between two audio frames is computed by calculating the distance between the two associated feature vectors. Repetitive parts of music are then detected from the resulting similarity matrix.

The latter approach [6], [8], [12] assumes that different structure types differ in the distributions of audio features and

formulates audio segmentation as a clustering problem. For example, the method described in [6] uses Markov random fields for clustering and introduces a neighboring constraint to ensure temporal continuity of audio segments. Though some promising results have been reported, many existing works assume the form of music, such as the number of verse and chorus segments [5], is known a priori. Moreover, the problem of semantic structure labeling is usually left unaddressed.

III. AUDIO SEGMENTATION

To enhance the accuracy of audio segmentation, we propose a constrained clustering algorithm to cluster local statistics related to the timbral and harmonic aspects of music. The use of constrained clustering improves the accuracy of segment boundary detection by imposing some local and global constraints. [15]We describe each system component in details.

A. Beat Detection

Audio features are then extracted from each beat interval, within which the music characteristics are likely to be more uniform and salient in contrast to those from frame-by-frame basis [1].

B. Audio Feature Representation

We adopt timbral features and harmonic features in this work because it has been reported [12] that combining them generally improves the performance of structure segmentation. For timbral feature, we extract the audio spectrum envelope, a power spectrum with frequency domain divided into logarithmically spaced subbands between 62.5Hz and 16 kHz to mimic human audition [10]. The resulting timbral feature vectors of a song are then clustered into 80 timbre types used in [6] with k-means clustering. Because a timbre type roughly corresponds to some combination of instruments [8] and different structure types of a song often consist of different combinations of instruments, the timbre type has been shown useful for structure segmentation [6].

While most existing works use pitch class profile (PCP) or chromagram to describe harmonic content, we adopt the higherlevel chord sequence as it represents the harmonic progression and tonal structure of music effectively [1]. We use the automatic chord recognition algorithm proposed in [11] to recognize chords and assign each beat interval with one of the 24 major/minor triads, which can be considered as 24 chord types of harmonic combinations.



Fig. 2. The constrained clustering algorithm

C. Segmentation by Constrained Clustering

Using the local distribution histograms as observations, we propose a constrained clustering algorithm for assigning each beat interval to an optimal structure type. While conventional k-means algorithm minimizes total intra-cluster variance simply by assigning points to the nearest centroid, we introduce additional constraints based on neighboring and global information.

A brief description of the algorithm is provided in Fig. 2. Given observations $X = \{x1, ..., xN\}$, where N is the total number of beat intervals, we use the constrained clustering to divide X into K clusters (K is empirically set to 8) and regard the cluster labels of each beat interval $Y = \{y1, ..., yN\}$ as the corresponding structure types. The assignment of cluster labels is performed by minimizing Eq. (1), where the first term on the right hand side measures the L2-distance between an observed histograms xi and a cluster centroid, and the second term (a smoothness term) introduces a penalty function f(.) to make the labeling of neighboring beat intervals smooth. As shown in Eq. (4), the smoothness terms is influenced by a factor n(yi) that denotes the number of consecutive beat intervals that have the same label up to the current beat interval. A penalty is imposed if n(yi) is smaller than a minimum length threshold Tmin, or larger than a maximum length threshold Tmax, while zmin and zmax are two constants that adjust the increasing rate of the penalty. The intuition behind the penalty function is that structure type does not change frequently in music. Since most songs can be partitioned into only 8 to 12 segments, no segments should be extremely short. Likewise, as a segment gets longer, it is more probable that another structure type is about to begin. The weight w in Eq(1) is introduced to balance the influence of the two terms. Empirically we set the parameters via a separate validation set.

IV. SEMANTIC STRUCTURE ANALYSIS

Since a paragraph of the lyrics most likely corresponds to an audio segment of a song, we can map the structure type labels to the audio segments once the structure of lyrics is determined (Fig. 3). The system components of the semantic structure analysis shown in Fig. 1 are described in this section.

A. Lyrics Processing

Lyrics are readily available on the web and can be retrieved efficiently by a simple crawler or an automatic retrieval algorithm [7]. After acquisition, we measure the similarity between each pair of paragraphs by the longest common subsequence (LCS), a sequence of matched words whose orderings is unaltered. LCS is a suitable similarity measure because lyrics often partially repeat themselves in a song. Furthermore, this measure is language-independent as it only considers whether two words are the same or not. The recursive formulation of the dynamic programming algorithm that computes LCS is:

$$T[i, j] = \begin{cases} T[i-1, j-1] + 1 & \text{if } x_i = y_j, \\ \max(T[i-1, j], T[i, j-1]) & \text{otherwise.} \end{cases}$$

Lyrics	N/A	I used to think that I could not go on/ And life was nothing but an awful song/	/ then I can	can fly/ I believe I	See I was on the verge of breaking down/ Sometimes silence can seem so loud/	If I can see it / then I can do it / If I just believe it / there's nothing to it	can fly/ I believe I can touch	Hey, cause I believe in you, oh	/ If I just	can fly/ I believe I can touch the	N/A
Label	intro	verse 1	verse 2	chorus	verse 1	verse 2	chorus	bridge	verse 2 (transposed)	chorus (transposed)	outro

Fig. 3. Lyrics and the semantic structure of the song "I believe I can fly."

B. Lyrics Structure Analysis

The set of structure types we consider are intro, verse, chorus, bridge, and outro, the five major types of traditional popular music [5], [13]. According to basic definition and characteristic of each type of song structure [13], the strategy for determining lyrics structure is as follows: z The most repeated paragraphs according to the LCS calculation are labeled as choruses. z The shortest paragraph with no repetition, if exists, is labeled as bridge. z The remaining paragraphs are labeled as verses. C. Semantic Structure Labeling of Audio Segments For the audio segments, we first directly label the first and the last audio segments as intro and outro, respectively, since they are instrumental parts with no lyrics. If the number of audio segments other than intro and outro exceeds the number of lyrics sections, the shortest segment is chosen and then merged with the neighboring segment whose local distribution histogram is more similar in terms of the L2-distance. This process is repeated until the number of audio segments is equal to that of lyrics sections, and then we are ready to completely map the lyrics structure labels to the audio segments.

V. EVALUTION RESULTS

A. Evaluation on Boundary Detection

Due to the lack of a large common database for comparison between different methods, we evaluate our system on a dataset of 13 manually annotated popular songs of various genres and artists from Hindi and Gujarati albums, which is available on website.1. For segment boundary detection, the performance evaluation is made on the precision and recall rate, and the f-value is computed by

f-value 2 precision recall (precision+recall) = \cdots (6)

which simultaneously considers the precision and recall rate. An estimated boundary is considered correct if it falls within 3 seconds from the ground-truth, as suggested in [6], [12].

Structure	Average	Precision	Recall	f-
Туре	Time(%)			value
Intro	8.6	0.720	0.820	0.767
Verse	27.9	0.461	0.615	0.527
Chorus	43.3	0.633	0.593	0.612
Bridge	10.8	0.033	0.057	0.042
Outro	9.4	0.873	0.628	0.731

As shown in Table I, high precision and recall rate are achieved in intro and outro detection, mainly due to the effectiveness of the adopted timbral feature that discerns the difference between non-vocal and vocal parts. Our system also performs well on chorus detection, even for the 7 songs having transposed choruses in our dataset. This shows the robustness brought by the use of lyrics. The accuracy of verse detection is slightly worse than that of chorus detection, possibly because the boundaries and the repeated music patterns of verses are less clear, and some particularly short verses might be erroneously classified as bridges.

The low accuracy of bridge detection stems from its irregularity nature. Some bridges are purely instrumental, while some are vocal parts with lyrics. Though the problem is currently hard to solve, in most cases bridges are relatively short segments in

music, which do not have large influence on the overall structure analysis. On the contrary, the promising results on verse and chorus detection are of great value in music information retrieval, since the two structure types are associated with the main theme of songs and are relatively important for common listeners. In addition to precision and recall rate of semantic labeling for each structure type, we also calculate the overall labeling accuracy, which is measured on a frame-by-frame basis. Only an exact match between estimated label and ground-truth label is counted as a correct labeling. The overall labeling accuracy is 52.0%, which is as competitive as the state-of-the-art system that has also made attempt on semantic labeling [14].

VI. CONCLUSION

In this paper, we have presented a multimodal approach that contributes to music structure segmentation and analysis. For audio segmentation, the proposed constrained clustering algorithm improves the accuracy of boundary detection by introducing constraints on neighboring and global information. For semantic labeling, we derive the semantic structure of songs by lyrics processing to achieve a robust structure labeling. The consistency between the resulting segmentation and the lyrics structure, along with the promising results of semantic labeling, make our system particularly attractive for content-based and user-oriented music information retrieval.

REFERENCES

[1] M. Casey et al., "Content-based music information retrieval: current directions and future challenges," in Proceedings of the IEEE, vol. 96, no. 4, pp. 668–696, 2008.

[2] J. Foote, "Visualizing music and audio using self-similarity," in Proc. ACM MM, pp. 77-80, 1999.

[3] J. Paulus and A. Klapuri, "Music structure analysis by finding repeated parts," in Proc. ACM Audio and Music Computing for Multimedia

Workshop, pp. 59-68, 2006.

[4] W. Chai, "Semantic segmentation and summarization of music," IEEE Signal Process. Magazine, pp. 124-132, 2006.

[5] N. C. Maddage et al., "Content-based music structure analysis with applications to music semantics understanding", in Proc. ACM MM, pp. 112–119, 2004.

[6] M. Levy and M. Sandler, "Structural segmentation of musical audio by constrained clustering," IEEE TASLP, vol. 16, no. 2, pp. 318–326, 2008.

[7] G. Geleijnse and J. Korst, "Efficient lyrics extraction from the web," in Proc. ISMIR, pp. 371–372, 2006

[8] M. Levy et al., "Extraction of high-level musical structure from audio data and its application to thumbnail generation," in Proc. ICASSP, pp.

1433-1436, 2006.

[9] S. Dixon, "Evaluation of the audio beat tracking system BeatRoot," Journal of New Music Research, pp. 39–50, 2007.

[10] M. Casey, "General sound classification and similarity in MPEG-7," Organised Sound, vol. 6, no. 2, pp. 153–164, 2001.
[11] H.-T. Cheng et al., "Automatic chord recognition for music classification and retrieval," in Proc. IEEE International Conf. Multimedia and Expo., pp. 1505–1508, 2008.

[12] M. Levy, K. Noland, and M. Sandler, "A comparison of timbral and harmonic music segmentation algorithms", in Proc. ICASSP, pp. 1433–1436, 2007

[13] J. P. G. Mahedero et al., "Natural language processing of lyrics," in Proc. ACM MM, pp. 475-478, 2005.

[14] J. Paulus and A. Klapuri, "Music structure analysis using a probabilistic

fitness measure and an integrated musicological model," in Proc.

ISMIR, pp. 369-374, 2008

[15] Multimodal Structure Segmentation and Analysis of

Music Using Audio and Textual Information Heng-Tze Cheng, Yi-Hsuan Yang, Yu-Ching Lin, and Homer H. Chen