A Review on Different Image Super-resolution methods for Satellite Images

1Sreya Miriam Sam, 2Vinod P.R

Image Processing,
1College of Engineering, Chengannur, kerala

Abstract: Super-resolution imaging (SR) is a technique that enhance the resolution of an imaging system. Single image super resolution is the process of converting a low resolution (LR) image into high resolution (HR). There are various fields where we can apply this technique. It emphasizes or enhance the quality of image. Here input will be a low resolution image that is used to convert into high resolution one. Now super resolution has become a popular topic in image processing. Satellite images are mainly focused here and various methods are evaluated to increase its quality. Since satellite images are transmitted through air, probability of losing information is more. Using various super resolution methods we can improve the resolution of the received low resolution images. In this paper an overview of various papers has been presented.

Index Terms: image super-resolution, satellite imagery, selective patch processing, difference curvature.

I. INTRODUCTION

Nowadays various HR digital cameras are available but still many computer vision applications such as satellite imaging, forensic, target detection, medical imaging and many more still had a strong need for higher resolution imagery which exceeded the capabilities of these HR digital cameras. We focus on low quality images to upgrade it. Satellite imagery is used in many areas of research. Resolution is the key issue in these types of images. The resolution is an important feature of the image.

Fig. 1. blurred image and high resolution image

Super-Resolution image reconstruction is a promising technique of digital imaging which attempts to reconstruct HR imagery by fusing the partial information contained within a number of under-sampled low-resolution (LR) images of that scene during the image reconstruction process. Super-resolution image reconstruction involves up-sampling of under-sampled images thereby filtering out distortions such as noise and blur[1]. Image degradation can occur due to many reasons such as weak capture devices and limited environmental resources. Photo reconstruction is applied in many areas such as satellite images, medical fields, forensic evidence and other natural images. Many applications are used such as astronomy, geological studies, meteorology and satellite images.

Satellite imagery (also Earth observation imagery or space-borne photography) are images of Earth or other planets collected by imaging satellites operated by governments and businesses around the world. The resolution of satellite images varies depending on the instrument used and the altitude of the satellite’s orbit. Satellite imagery is sometimes altered with aerial photography, that has higher resolution, but is more expensive. Various satellite enhancement methods are evaluated here.
II. LITERATURE SURVEY

This section includes various methods used for image super-resolution in satellite images. Here we are evaluating different papers and estimating its efficiency using PSNR (Peak Signal to Noise Ratio).

\[
\text{PSNR} = 10 \log_{10} \left(\frac{R^2}{\text{MSE}} \right),
\]

where \(R \) is the maximum fluctuation in the input image,

\[
\text{MSE} = \sum_{m,n} (I_1(m, n) - I_2(m, n))^2 \sqrt{(M \times N)},
\]

where \(I_1 \) is the input image and \(I_2 \) is the proposed enhanced image, \(M \) and \(N \) are the size of the images.

A. Discrete Wavelet Transform and Threshold Decomposition Driven Morphological Filter:

In [2] enhancement technique uses DWT to decompose image into different subbands. The effort on edge enhancement has been focused mostly on improving the visual perception of images that are unclear because of blur. DWT separates the input image into different subband images, namely LL, LH, HL, and HH. In order to preserve the high-frequency components of the image DWT has been employed. The low contrast input color image is decomposed into R,G,B color space. DWT is applied to each color(R,G,B) separately for betterment. The LL sub band of each color component of the image is decomposed into a series of binary levels. Each of the binary levels may be processed separately. These binary levels obtained can be then recombined to produce the final gray scale image with pixel values identical to those produced by gray scale processing.

B. Adaptive Band Specific Image Enhancement Scheme:

In [3] illustrates the enhancement technique of all the frequency bands used in satellite images depending upon the area of application. The image is segmented in nine regions known as ‘Top Left (TL),’ ‘Top Middle (TM),’ ‘Top Right (TR),’ ‘Middle Left (ML),’ ‘Middle Middle (MM),’ ‘Middle Right (MR),’ ‘Bottom Left (BL),’ ‘Bottom Middle (BM),’ and ‘Bottom Right (BR).’

C. Weiner filter and thresholding:

In [4] median filter is selected as a preprocessing filter. As in an averaging filter, each output pixel is set to an average of the pixel values in the vicinity of the corresponding input pixel. However, with median filtering, by calculating the median of the neighborhood pixels, an output pixel value is determined, rather than the mean. In the process of contrast enhancement, pixels with lower pixel value than a specific value are displayed as black, whereas the pixels having higher pixel value are displayed as white, and pixels having pixel value in between these two values are displayed as tint of gray. The outcome of this process is a linear mapping of a subset of pixel values to the full range of grays from black to white, creating an image of higher contrast.

Diagram:

- Multi-spectral image
- Selecting region of enhancement
- Application specific band determination
- Band thresholding for contrast enhancement
- Enhanced image

Fig.2: System Model
D. **Discrete Wavelet Transform and Singular Value Decomposition:**

In [5] DWT decomposes the input image into four subbands and different operation is performed on different bands. Interpolation method is used here for the resolution enhancement of the satellite image whereas the Single wavelet decomposition technique enhances the contrast of the satellite image.

E. **Automatic Multi-Histogram Equalization for Satellite Images:**

In [6] the original image is converted into grayscale image. Calculate the mean brightness value (M) of the original image. Find the histogram of that image and calculate the number of valley points (n). Find the histogram thresholding value (T) by using \(T = M/n \). Minimize the number of valley points by using histogram thresholding value. Rearrange the valley points from the histogram such that two valley points will not repeat within T. Name the resultant number of valley points as \(n \). Now select the resultant valley points as threshold points and divide the histogram into \((n+1) \) small parts. Equalize each histogram independently using Probability Density Function (PDF) and Cumulative Distribution Function (CDF). Normalize the image brightness. So, the resultant image after normalization will be the contrast enhanced image.

F. **DWT and high frequency subband image interpolation:**

In [7] Discrete Wavelet Transform is applied on the input image which decomposes the image into four sub-bands. Interpolation is performed on these four subbands. The low frequency subband contains less information as compared to the original input image. Hence original input image is used in the interpolation process. To preserve edge information interpolation on frequency subbands are performed.

The difference between the low resolution input image and interpolated LL subband image generates their high frequency components. This difference image and interpolated LH, HL and HH bands are added to estimate the respective high frequency components. Inverse DWT and bicubic interpolation is performed to obtain enhanced image.

G. **Multi-technology fusion:**

In [8] it first decomposes the original image into low frequency and high-frequency components using bi-dimensional empirical mode decomposition (BEMD). BEMD decomposes the original image into k IMF (intrinsic mode functions) and a Residue. The residue contains the edge information of the image. To enhance the low-frequency information, contrast limited adaptive histogram equalization is applied to IMF.

H. **Complex Wavelet Transform:**

In [9] it shows Dual-Tree Complex Wavelet Transform. The DT-CWT is a combination of two real-valued decimated DWTs. The ordinary decimated DWT is shift variant due to the decimation operation exploited in the transform. As a result, even if a small shift in the input signal can result in a very different set of wavelet coefficients. DT-CWT which exhibits shift-invariant property and improves directional resolution when compared with that of the decimated DWT. First create an initial estimate \(Y \) of the unknown HR image. The initial estimate \(Y \) is decomposed using the one-level DT-CWT to create one complex-valued low-pass subband and six complex-valued high-pass subbands. In the final step, the input LR image, together with the complex-valued high-pass subbands \(Y \) extracted from the one-level DT-CWT decomposition of \(Y \), is used to create the HR image by employing IDT-CWT.

I. **Dual-Tree Complex Wavelet Transform and Non-local Means:**

In [11] DT-CWT-based nonlocal-means-based Resolution enhancement technique is proposed, using the DT-CWT, Lanczos interpolation, and Non local means filter. The NLM filter is based on the assumption that image content is likely to repeat itself within some neighborhood. Then, we apply the inverse DT-CWT to these filtered subbands along with the interpolated LR input image. And it is used to reconstruct the HR image.

J. **DWT with SWT**

In [12] Stationary Wavelet Transform (SWT) with Discrete Wavelet Transform (DWT) is performed on the input image. Both the wavelets use low resolution image as input image and produce high frequency subband images. All the four subband images are interpolated in DWT but not needed to interpolate in SWT. All the high frequency subband images are interpolated in SWT but not needed to interpolate in DWT. All the high frequency subband images are added to each other, which is considered as an estimated high frequency subband image.

K. **Deep memory connected network**

In [15] a deep memory connected network is used to enhance the image with large receptive field and better reconstruction ability. To combine local detail as well as global information learned in different neural layers, DMCN is elaborately designed with local and global memory connections.
III. PROPOSED WORK

The objective of single image super-resolution is to reconstruct a visually pleasing image from a low-resolution image after downsampling and blurring. When we maximize the size of an image their quality degrades. To regain the quality is a challenge. Deep learning SR methods are all executed on GPU, which is limited in some mobile and ordinary devices with only CPU. Since PSNR rate with difference curvature introduced in [17] with various datasets is high we follow [17]. Its execution time is less compared to other methods.

Difference-Curvature based SPP[17]: Here the image is analysed in the form of patches. First the input LR image is divided into N patches. In the training phase we only have the HR image, then blur and down-sample it into LR size by bicubic interpolation. SPP(selective patch processing) strategy is used to select the patches with more edges and discard the patches with more ramps. Here difference curvature is considered since it preserves high frequency information, and distinguishes edges from flat, ramp region and isolated noise. Difference curvature can be calculated by,

\[C_i = \| f_i^\Delta \| - \| f_i^\eta \|, \]

where \(f_i^\Delta \) and \(f_i^\eta \) are the second order derivatives in the direction of the gradient \(\Delta f_i \) and in the direction perpendicular to \(\Delta f_i \) respectively.

As the purpose of SPP is to select some informative patches by some special criterion, the median value over \(C_i \) in each patch is a right choice.

Learning mixture prior model[17]: Mixture prior model is a clustering model, and use it here for representing the patch prior well. A more convincing reason is that the distribution of each image patch generally has a multimodal landscape where any component could represent a special texture.

We define the joint features by concatenating \(x_i^h \) and \(x_i^l \).

Now \(x_i = [x_i^h \mid x_i^l] \)

where \(x_i^h \) - high resoluted patch
\(x_i^l \) - low resoluted patch

since we have both HR and LR during training phase. Then the N joint vectors are divided into T groups by sorting and segmenting the difference curvature of each image patch. Then they are mapped between the HR and LR features of each group.
Mixed Matching[17]: During testing phase we don't have high resoluted image to reconstruct. In order to improve the performance during reconstruction mixed matching is performed. Higher components are selected in mixed matching. The components of interpolated image with higher frequency values are matched with the obtained image and HR image is reconstructed. The dataset using here is Landsat in USGS(United states geological survey).

IV. Comparative study of different papers:

<table>
<thead>
<tr>
<th>Author</th>
<th>Ind:</th>
<th>Preprocessing</th>
<th>Contrast enhancement</th>
<th>Method</th>
<th>PSNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pratibha Pandey et al.</td>
<td>[4]</td>
<td>Median filter</td>
<td>Thresholding</td>
<td>Contrast stretching</td>
<td>16.77</td>
</tr>
<tr>
<td>Aditi Sharmaet al.</td>
<td>[5]</td>
<td>DWT</td>
<td>Interpolation</td>
<td>Singular Value Decomposition</td>
<td>22.21</td>
</tr>
<tr>
<td>A. Pugazhenti et al.</td>
<td>[6]</td>
<td>Average filter</td>
<td>Histogram equalization</td>
<td>PDF and CDF</td>
<td>23.76</td>
</tr>
<tr>
<td>B. D. Jadhav et al.</td>
<td>[7]</td>
<td>DWT</td>
<td>Interpolation</td>
<td>Bicubic interpolation and IDWT</td>
<td>32.042</td>
</tr>
<tr>
<td>Lalit Mohan Satapathy et al.</td>
<td>[8]</td>
<td>Bi-dimensional empirical mode decomposition</td>
<td>Contrast limited adaptive histogram equalization</td>
<td>Multi-technology fusion</td>
<td>17.56</td>
</tr>
<tr>
<td>Hasan Demirel et al.</td>
<td>[9]</td>
<td>Gaussian low pass filter</td>
<td>Interpolation</td>
<td>DT-CWT</td>
<td>30.8993</td>
</tr>
<tr>
<td>Pooja Bidwai et al.</td>
<td>[10]</td>
<td>DWT</td>
<td>Interpolation</td>
<td>SVD and IDWT</td>
<td>41.267</td>
</tr>
<tr>
<td>Mansing Rathod et al.</td>
<td>[12]</td>
<td>DWT</td>
<td>Bicubic interpolation</td>
<td>DWT with SWT</td>
<td>51.86</td>
</tr>
<tr>
<td>Shilpa Suresh et al.</td>
<td>[14]</td>
<td>DWT and SWT</td>
<td>Histogram equalization</td>
<td>Singular value decomposition</td>
<td>24.6297</td>
</tr>
<tr>
<td>Wenjia Xu et al.</td>
<td>[15]</td>
<td>Low pass filter</td>
<td>Convolutional filter</td>
<td>DMCN</td>
<td>34.19</td>
</tr>
</tbody>
</table>

V. CONCLUSION
In most digital imaging applications, high resolution images or videos are usually desired for later image processing and analysis[18]. The goal of single-image super-resolution is to obtain a high-resolution image from a single low-resolution image. Here we focused mainly on satellite images, since they are more prone to distortion. Here we surveyed different methods. Different Image improvement algorithms produce many different methodologies for image amendment to attain visually accepted images. The techniques of Contrast enrichment are utilized broadly for betterment of visual quality of low contrast images. Here we have used techniques like wavelet transform and morphological filtering, contrast enhancement, deep memory connected network, DWT-PCA based fusion technique and adaptive band enhancement technique.

VI. ACKNOWLEDGMENT
We would like to thank director of IHRD, Principal of our institution for providing us the facility to support this work. Also we thank Smitha Dharan, HOD of CSE of our institution for the valuable comments that improved our work.

REFERENCES

[8] Lalit Mohan Satapathy ; Abhisek Dalai ; Soubhagya Satapathy ; Anwesa Jena, “Satellite image enhancement based on multi-technology fusion”, 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), September 2018

[10] Pooja Bidwai ; D. J. Tuptewar, “Resolution and contrast enhancement techniques for grey level, color image and satellite image”, in 2015 International Conference on Information Processing (ICIP), June 2016

[18] Jianchao Yang ; Thomas Huang, “Image super-resolution: Historical overview and future challenges”

[19] Boonwat Attachoo ; Petchrat Pattanasathanon A new approach for colored satellite image enhancement, 2008 IEEE International Conference on Robotics and Biomimetics

[22] Yunfeng Zhang ; Qinglan Fan ; Fangxun Bao ; Yifang Liu ; Caiming Zhang Single-Image Super-Resolution Based on Rational Fractal Inter-polation, IEEE Transactions on Image Processing

[23] Wonseok Kang ; Jaehwan Jeon ; Eunsung Lee ; Changhun Cho ; Junhoon Jung ; Taechan Kim ; Aggelos, Real-time super-resolution for digital zooming using finite kernel-based edge orientation estimation and truncated image restoration, 2013 IEEE International Conference on Image Processing