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Abstract: Let G = (V, E) be a simple graph with p vertices and q edges. Let S  V(G). S is called a strong restrained 

dominating set of G if for every u  V – S, there exists v  S and w  V – S such that v and w strongly dominate u. The 

minimum cardinality of a strong restrained dominating set of G is called the strong restrained domination number of G and 

is denoted by 𝛄𝐬𝐫𝐝(𝐆). The existence of a strong restrained dominating set of G is guaranteed, since V(G) is a strong 

restrained dominating set of G. In this paper, the sum and product of strong restrained domination number of path and its 

derived graph are studied. 
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1. INTRODUCTION 

 

Throughout this paper only path is considered. Let G = (V, E) be a simple graph with p vertices and q edges. The degree of any 

vertex u in G is the number of edges incident with u and is denoted by deg u. The minimum and maximum degree of a vertex is 

denoted by (G) and (G) respectively. A vertex of degree zero in G is called an isolated vertex and a vertex of degree one in G is 

called a pendant vertex. A subset S of V(G) of a graph G is called a dominating set of G if every vertex in V(G) \ S is adjacent to a 

vertex in S [8]. The domination number (G) is the minimum cardinality of a dominating set of G. The concept of strong domination 

in graphs was introduced by Sampathkumar and Pushpalatha [5] and the restrained domination was introduced by Domke [3] et al. 

A set S  V(G) is said to be a strong dominating set of G if every vertex v  V – S is strongly dominated by some vertex u in S. A 

set S  V(G) is a restrained dominating set of G, if every vertex not in S is adjacent to a vertex in S and to a vertex in V – S. The 

restrained domination number of a graph G, denoted by r(G), is the minimum cardinality of a restrained dominating set in G. The 

strong restrained domination was introduced by Selvaloganayaki and Namasivayam [6]. For all graph theoretic terminologies and 

notations, Harary [4] is referred to. In this paper, the sum and product of strong restrained domination number of path and its derived 

graph are studied. 

 

Definition 1.1: Let G = (V, E) be a simple graph with p vertices and q edges. Let S  V(G). S is called a strong restrained dominating 

set of G if for every u  V – S, there exists v  S and w  V – S such that v and w strongly dominate u. The minimum cardinality 

of a strong restrained dominating set of G is called the strong restrained domination number of G and is denoted by γsrd(G). The 

existence of a strong restrained dominating set of G is guaranteed, since V(G) is a strong restrained dominating set of G. 

 

Result 1.2 [6]: Let G = (V, E) be a simple connected graph. If the degree of any support vertex is exactly two, then it belongs to 

any strong restrained dominating set of G. 

Result 1.3 [6]: For the path Pm, γsrd(Pm) = {
n + 2 if m = 3n 

n + 3 if m = 3n + 1
n + 4 if m = 3n + 2

  where n ≥ 1. 

 

2. MAIN RESULTS 

 

In this section, the authors studied the sum and product of strong restrained domination number of path and its derived graphs. 

 

Definition 2.1: The complement of a graph G is a graph H on the same vertices such that two distinct vertices of H are adjacent if 

and only if they are not adjacent in G. 

 

Theorem 2.2: When n  2, 
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γsrd(Pm) + γsrd(P̅m)=

{
 
 

 
 

4 if m = 2
6 if m = 3

8 if m = 4 or m = 5
n + 4 if m = 3n

n + 5 if m = 3n + 1
n + 6 if m = 3n + 2 

 and 

γsrd(Pm) × γsrd(P̅m)=

{
  
 

  
 

4 if m = 2
9 if m = 3
16 if m = 4  
15 if m = 5

2(n + 2) if m = 3n

2(n + 3) if m = 3n + 1
2(n + 4) if m = 3n + 2 

 

 

Proof: Case(i): Suppose m = 2. Let V(P̅2) = {v1, v2}. {v1, v2} is the unique strong restrained dominating set of P2 as well as P̅2. 

Therefore γsrd(P2) + γsrd(P̅2) = 4 and γsrd(P2) × γsrd(P̅2) = 4. 

Case(ii): Suppose m = 3. V(P̅3) = {v1, v2, v3}. P̅3 = K2 ∪ K1. {v1, v2, v3} is the strong restrained dominating set of P3 as well as P̅3. 

Hence srd(P3) + γsrd(P̅3) = 6 and γsrd(P3) × γsrd(P̅3) = 9. 

Case(iii): Suppose m = 4. P̅4 is again P4. By result 1.3, srd(P4) = 4. Hence srd(P4) + γsrd(P̅4) = 8 and γsrd(P4) × γsrd(P̅4) = 16. 

Case(iv): Suppose m = 5. V(P̅5) = {v1, v2, v3, v4, v5}. {v1, v3, v5} is the unique strong restrained dominating set of P̅5. Hence γsrd(P̅5) 
= 3. By result 1.3, srd(P5) = 5. Therefore srd(P5) + γsrd(P̅5) = 8 and γsrd(P5) × γsrd(P̅5) = 15. 

Case (v): Let G = P̅3n. Let n ≥ 2. V(G) = {v1, v2, ..., v3n-1, v3n}. deg v1 = deg v3n = 3n–2 = ∆(G) and deg vi = 3n–3, 2 ≤ i ≤ 3n–1. Let 

S = {v1, v3n}. Therefore V–S = {v2, v3, ..., v3n-2,  v3n-1}. The vertices vi, 3 ≤ i ≤ 3n–2, are strongly dominated by both v1 and v3n in S 

and strongly dominated by all the vertices except vi+1, vi-1 in V–S. The vertex v2 is also strongly dominated by v3n in S and strongly 

dominated by all the vertices except v3 in V–S. Similarly the vertex v3n-1 is also strongly dominated by v1 in S and strongly dominated 

by all the vertices except v3n-2 in V–S. Therefore S is a strong restrained dominating set of G. Hence γsrd(G) ≤ 2 ---(1). 

Suppose let T be any strong restrained dominating set of G such that │T│= 1. Since v1 and v3n are the only maximum 

degree vertices, v1 and v3n are adjacent, either v1 or v3n belongs to T. Suppose v1 belongs to T. The vertex v3n is strongly dominated 

by v1 in T but no vertex in V–T. The case is similar if v3n belongs to T, a contradiction. Hence there is no strong restrained dominating 

set with only one element. Therefore γsrd(G) ≥ 2 ---(2). From (1) and (2) we get γsrd(G) = 2. By result 1.3, srd(P3n) = n + 2. Hence 

srd(P3n) + γsrd(P̅3n) = n + 4 and γsrd(P3n) × γsrd(P̅3n) = 2(n + 2). 

Case (vi): Let G = P̅3n+1, n ≥ 2 or G = P̅3n+2, n ≥ 2. Proof is similar to the case (v). Hence γsrd(G) = 2. Using result 1.3, srd(P3n+1) 

+ γsrd(P̅3n+1) = n + 5, γsrd(P3n+1) × γsrd(P̅3n+1) = 2(n + 3) and srd(P3n+2) + γsrd(P̅3n+2) = n + 6, γsrd(P3n+2) × γsrd(P̅3n+2) = 2(n 

+ 4). Hence the theorem. 

 

Definition 2.3 [7]: The line graph L(G) of G is the graph whose vertex set is E(G) in which two vertices are adjacent if and only if 

they are adjacent in G. If e = uv is an edge of G then dL(G)(e) = dG(u) + dG(v) – 2.  

 

Theorem 2.4:  

γsrd(Pm) + γsrd(L(Pm))= 

{
 
 

 
 

3   if m = 2
5    if m = 3 

2n + 5    if m = 3n, n > 1
2n + 5    if m = 3n + 1, n ≥ 1
2n + 7    if m = 3n + 2, n ≥ 1

 and  

γsrd(Pm) × γsrd(L(Pm))= 

{
 
 

 
 

2    if m = 2
6    if m = 3

n2 + 5n + 6  if m = 3n, n > 1

n2 +  5n + 6     if m = 3n + 1, n ≥ 1

n2 +  7n + 12    if m = 3n + 2, n ≥ 1

 

 

Proof: Since L(P2) = P1. Using result 1.3, γsrd(P2) + γsrd(L(P2)) = 3, γsrd(P2) × γsrd(L(P2)) = 2, γsrd(P3)+γsrd(L(P3)) = 5, 

γsrd(P3) × γsrd(L(P3)) = 6. Suppose m = 3n, n ≥ 2, γsrd(P3n) + γsrd(L(P3n)) = γsrd(P3n) + γsrd(P3(n−1)+2) = 2n + 5, γsrd(P3n) × 

γsrd(L(P3n)) = n2 + 5n + 6. Similarly m = 3n + 1, n ≥ 1, γsrd(P3n+1) + γsrd(L(P3n+1)) = γsrd(P3n+1) + γsrd(P3n) = 2n + 5, 

γsrd(P3n+1) × γsrd(L(P3n+1)) = n2 + 5n + 6 and m = 3n + 2, n ≥ 1, γsrd(P3n+2) + γsrd(L(P3n+2)) = γsrd(P3n+2) + γsrd(P3n+1) = 2n 

+ 7, γsrd(P3n+2) × γsrd(L(P3n+2)) = n2 + 7n + 12. Hence the theorem.     

 

Definition 2.5 [2]: The jump graph J(G) of G is the graph whose vertex set is E(G) in which two vertices are adjacent if and only 

if they are non-adjacent in G. 

 

 

 

Theorem 2.6: 
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γsrd(Pm)+γsrd(J(Pm))= 

{
  
 

  
 

3   if m = 2
5    if m = 3 

7   if m = 4 orm = 6
9   if m = 5

n + 4    if m = 3n, n > 2
   n + 5    if m = 3n + 1, n ≥ 2
n + 6    if m = 3n + 2, n ≥ 2

 and 

γsrd(Pm) × γsrd(J(Pm))= 

{
  
 

  
 

2   if m = 2
6  if m = 3 

12   if m = 4 orm = 6
20   if m = 5

2(n + 2)   if m = 3n, n > 2

   2(n + 3)  if m = 3n + 1, n ≥ 2
2(n + 4)   if m = 3n + 2, n ≥ 2

 

 

Proof: Obviously γsrd(J(P2)) = 1 and J(Pm) = P̅m−1, as discussed in the theorem 2.2. We get the theorem.  

 

Definition 2.7 [4]: The subdivision graph S(G) of a graph G is obtained from G by inserting a new vertex into every edge of G. 

 

Theorem 2.8: When n  1, 

γsrd(Pm) + γsrd(S(Pm))= {

5 if m = 2
3n + 5 if m = 3n

3n + 6 if m = 3n + 1
3n + 7 if m = 3n + 2

 and  

γsrd(Pm) × γsrd(S(Pm))= {

6 if m = 2
2n2 + 7n + 6 if m = 3n

2n2 + 9n + 9 if m = 3n + 1
2n2 + 11n + 12 if m = 3n + 2

 

 

Proof: Case(i): Suppose m = 2. S(P2) = P3. Hence γsrd(P2) + γsrd(S(P2)) = 5 and γsrd(P2) × γsrd(S(P2)) = 6. Suppose m = 3n, n ≥ 

1. Using result 1.3, γsrd(P3n) + γsrd(S(P3n)) = γsrd(P3n) + γsrd(P3(2n−1)+2) = 3n + 5 and γsrd(P3n) × γsrd(S(P3n)) = 2n2 + 7n + 6. 

Similarly m = 3n + 1, n ≥ 1, γsrd(P3n+1) + γsrd(S(P3n+1)) = γsrd(P3n+1) + γsrd(P3(2n)+1) = 3n + 6, γsrd(P3n+1) × γsrd(S(P3n+1)) 

= 2n2 + 9n + 9 and m = 3n + 2, n ≥ 1, γsrd(P3n+2) + γsrd(S(P3n+2)) = γsrd(P3n+2) + γsrd(P3(2n+1)) = 3n + 7, γsrd(P3n+2) × 

γsrd(S(P3n+2)) = 2n2 + 11n + 12. Hence the theorem.     

 

Definition 2.9: The paraline graph P(L(G)) is a line graph of subdivision graph of G. 

 

Theorem 2.10: When n  1, 

γsrd(Pm) + γsrd(P(L(Pm)))= {

4 if m = 2
3n + 4 if m = 3n

3n + 5 if m = 3n + 1
3n + 8 if m = 3n + 2

 and  

γsrd(Pm) × γsrd(P(L(Pm)))= {

4 if m = 2
2n2 + 6n + 4 if m = 3n

2n2 + 8n + 6 if m = 3n + 1
2n2 + 14n + 20 if m = 3n + 2

 

 

Proof: Case(i): Suppose m = 2. P(L(P2)) = P2. Therefore γsrd(P2) + γsrd(P(L(P2))) = 4 and γsrd(P2) × γsrd(P(L(P2))) = 4. Suppose 

m = 3n, n ≥ 1. Using result 1.3, γsrd(P3n) + γsrd(P(L(P3n))) =   γsrd(P3n) + γsrd(P3(2n−1)+1) = 3n + 4 and γsrd(P3n) × 

γsrd(P(L(P3n))) = 2n2 + 6n + 4. Similarly m = 3n + 1, n ≥ 1, γsrd(P3n+1) + γsrd(P(L(P3n+1))) =   γsrd(P3n+1) + γsrd(P3(2n)) = 3n 

+ 5, γsrd(P3n+1) × γsrd(P(L(P3n+1))) = 2n2 + 8n + 6 and m = 3n + 2, n ≥ 1, γsrd(P3n+2) + γsrd(P(L(P3n+2))) =   γsrd(P3n+2) + 

γsrd(P3(2n)+2) = 3n + 8, γsrd(P3n+2) × γsrd(P(L(P3n+2))) = 2n2 + 14n + 20. Hence the theorem. 

 

Definition 2.11 [1]: The corona G1⊙G2 of two graphs G1 and G2 is defined as the graph by taking one copy of G1 (which has p1 

points) and p1 copies of G2 and then joining the ith point of G1 to every point in the ith copy of G2. 

 

Theorem 2.12: When n  1,  

𝛾𝑠𝑟𝑑(𝑃𝑚) + 𝛾𝑠𝑟𝑑(𝑃𝑚⊙𝐾1) = {

6 𝑖𝑓 𝑚 = 2
5𝑛 + 4 𝑖𝑓 𝑚 = 3𝑛

5𝑛 + 7 𝑖𝑓 𝑚 = 3𝑛 + 1
5𝑛 + 10 𝑖𝑓 𝑚 = 3𝑛 + 2
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𝛾s𝑟𝑑(𝑃𝑚) × 𝛾𝑠𝑟𝑑(𝑃𝑚⊙𝐾1) = 

{
 

 
8 𝑖𝑓 𝑚 = 2

4𝑛2 + 10𝑛 + 4 𝑖𝑓 𝑚 = 3𝑛

4𝑛2 + 16𝑛 + 12 𝑖𝑓 𝑚 = 3𝑛 + 1

4𝑛2 + 22𝑛 + 24 𝑖𝑓 𝑚 = 3𝑛 + 2

 

 

Proof: When m = 2, P2⊙K1 = P4. Using result 1.3, 𝛾𝑠𝑟𝑑(𝑃2) + 𝛾𝑠𝑟𝑑(𝑃2⊙𝐾1) = 6, 𝛾𝑠𝑟𝑑(𝑃2) × 𝛾𝑠𝑟𝑑(𝑃2⊙𝐾1) = 8. Suppose m  3. 

Let G be the graph Pm⊙K1. Let V(G) = {vi, ui / 1 ≤ i ≤ n} and E(G) = {vivi+1 / 1 ≤ i ≤ n – 1} ∪ {viui / 1 ≤ i ≤ n}. Then deg v1 = 2 = 

deg vn, deg vi = 3, 2 ≤ i ≤ n – 1 and deg ui = 1, 1 ≤ i ≤ n. Let S be a strong restrained dominating set of G. Since any strong restrained 

dominating set contains all the end vertices, therefore all ui, 1 ≤ i ≤ n belong to S. The subgraph H induced by the remaining vertices 

is the path Pm. The pendent vertices do not strongly dominate the vertices of the path Pm. Using result 1.3, 𝛾𝑠𝑟𝑑(𝐻) = 𝛾𝑠𝑟𝑑(𝑃𝑚). 
Therefore │S│= 𝛾𝑠𝑟𝑑(𝑃𝑚) + nK1. Hence 𝛾𝑠𝑟𝑑(𝑃3𝑛) + 𝛾𝑠𝑟𝑑(𝑃3𝑛 ⊙𝐾1) = 5n + 4, 𝛾𝑠𝑟𝑑(𝑃3𝑛) × 𝛾𝑠𝑟𝑑(𝑃3𝑛 ⊙𝐾1) = 4n2 + 10n + 4, n  

1. Similarly, 𝛾𝑠𝑟𝑑(𝑃3𝑛+1) + 𝛾𝑠𝑟𝑑(𝑃3𝑛+1⊙𝐾1) = 5n + 7, 𝛾𝑠𝑟𝑑(𝑃3𝑛+1) × 𝛾𝑠𝑟𝑑(𝑃3𝑛+1⊙𝐾1) = 4n2 + 16n + 12 and 𝛾𝑠𝑟𝑑(𝑃3𝑛+2) + 

𝛾𝑠𝑟𝑑(𝑃3𝑛+2⊙𝐾1) = 5n + 10, 𝛾𝑠𝑟𝑑(𝑃3𝑛+2) × 𝛾𝑠𝑟𝑑(𝑃3𝑛+2⊙𝐾1) = 4n2 + 22n + 24, n  1. Hence the theorem. 

 

Theorem 2.13: When k  1,  

𝛾𝑠𝑟𝑑(𝑃𝑚) + 𝛾𝑠𝑟𝑑(𝑃𝑚⊙𝐾𝑛) = {

2(𝑛 + 2) 𝑖𝑓 𝑚 = 2
2𝑘 + 𝑛𝑚 + 4 𝑖𝑓 𝑚 = 3𝑘

2𝑘 + 𝑛𝑚 + 6 𝑖𝑓 𝑚 = 3𝑘 + 1
2𝑘 + 𝑛𝑚 + 8 𝑖𝑓 𝑚 = 3𝑘 + 2

 

𝛾𝑠𝑟𝑑(𝑃𝑚) × 𝛾𝑠𝑟𝑑(𝑃𝑚⊙𝐾𝑛) = {

4(𝑛 + 1) 𝑖𝑓 𝑚 = 2

(𝑘 + 2)(𝑘 + 𝑛𝑚 + 2) 𝑖𝑓 𝑚 = 3𝑘
(𝑘 + 3)(𝑘 + 𝑛𝑚 + 3) 𝑖𝑓 𝑚 = 3𝑘 + 1

(𝑘 + 4)(𝑘 + 𝑛𝑚 + 4) 𝑖𝑓 𝑚 = 3𝑘 + 2

 

 

Proof: When m = 2, P2⊙𝐾n = P4  2(n – 1) K1. Therefore 𝛾𝑠𝑟𝑑(𝑃2) + 𝛾𝑠𝑟𝑑(𝑃2⊙𝐾𝑛) = 2(n + 2), 𝛾𝑠𝑟𝑑(𝑃2) × 𝛾𝑠𝑟𝑑(𝑃2⊙𝐾𝑛) = 4(n 

+ 1). Suppose m  3. Let G be the graph Pm⊙ K̅n. Let V(G) = {vi, vij / 1 ≤ i ≤ m, 1 ≤ j ≤ n} and E(G) = {vivi+1, vivij / 1 ≤ i ≤ m – 1, 

1 ≤ j ≤ n} ∪ {vmvmj / 1 ≤ j ≤ n}. Let S be a strong restrained dominating set of G. Since any strong restrained dominating set contains 

all the end vertices, therefore all vij, 1 ≤ i ≤ m, 1 ≤ j ≤ n belong to S. The subgraph H induced by the remaining vertices is the path 

Pm. The pendent vertices do not strongly dominate the vertices of the path Pm. Using result 1.3, 𝛾𝑠𝑟𝑑(𝐻) = 𝛾𝑠𝑟𝑑(𝑃𝑚). Therefore 

│S│= 𝛾𝑠𝑟𝑑(𝑃𝑚) + nm. Hence 𝛾𝑠𝑟𝑑(𝑃3𝑘) + 𝛾𝑠𝑟𝑑(𝑃3𝑘⊙𝐾𝑛) = 2k + nm + 4, 𝛾𝑠𝑟𝑑(𝑃3𝑘) × 𝛾𝑠𝑟𝑑(𝑃3𝑘 ⊙𝐾𝑛) = (k + 2) (k + nm + 2), n 

 1. Similarly, 𝛾𝑠𝑟𝑑(𝑃3𝑘+1) + 𝛾𝑠𝑟𝑑(𝑃3𝑘+1⊙𝐾𝑛) = 2k + nm + 6, 𝛾𝑠𝑟𝑑(𝑃3𝑘+1) × 𝛾𝑠𝑟𝑑(𝑃3𝑘+1⊙𝐾𝑛) = (k + 3) (k + nm + 3) and 

𝛾𝑠𝑟𝑑(𝑃3𝑘+2) + 𝛾𝑠𝑟𝑑(𝑃3𝑘+2⊙𝐾𝑛) = 2k + nm + 8, 𝛾𝑠𝑟𝑑(𝑃3𝑘+2) × 𝛾𝑠𝑟𝑑(P3𝑘+2⊙𝐾𝑛) = (k + 4) (k + nm + 4), n  1. Hence the theorem. 

 

Definition 2.14: Let G be a graph with a fixed vertex v and let (Pm : G) be the graph obtained from m copies of G and the path Pm: 

u1, u2, …., um by joining ui with the vertex of the jth copy of G by means of an edge for 1 ≤ i ≤ n. 

 

Theorem 2.15: When n  2, 

𝛾𝑠𝑟𝑑(𝑃𝑚) + 𝛾𝑠𝑟𝑑(𝑃𝑚: 𝑆𝑛) = 

{
 
 

 
 

2(𝑛 + 2) 𝑖𝑓 𝑚 = 2

3(𝑛 + 3)𝑖𝑓 𝑚 = 3

𝑘(3𝑛 + 4) + 2 𝑖𝑓 𝑚 = 3𝑘, 𝑘 ≥ 2

4(𝑘 + 1) + 𝑛(3𝑘 + 1)𝑖𝑓 𝑚 = 3𝑘 + 1, 𝑘 ≥ 1

2(2𝑘 + 3) + 𝑛(3𝑘 + 2) 𝑖𝑓 𝑚 = 3𝑘 + 2, 𝑘 ≥ 1

 

𝛾𝑠𝑟𝑑(𝑃𝑚) × 𝛾𝑠𝑟𝑑(𝑃𝑚: 𝑆𝑛) = 

{
 
 

 
 

4(𝑛 + 1) 𝑖𝑓 𝑚 = 2

9(𝑛 + 2)𝑖𝑓 𝑚 = 3

𝑚(𝑘 + 2)(𝑛 + 1)𝑖𝑓 𝑚 = 3k, 𝑘 ≥ 2

𝑚(𝑘 + 3)(𝑛 + 1)𝑖𝑓 𝑚 = 3𝑘 + 1, 𝑘 ≥ 1

𝑚(𝑘 + 4)(𝑛 + 1) 𝑖𝑓 𝑚 = 3𝑘 + 2, 𝑘 ≥ 1

 

 

Proof: Let G be a graph (Pm: Sn), n  2, where Pm be the path having m vertices and Sm = K1,m. Let u1, u2, …., um be the vertices of 

path Pm. Then V((Pm : Sn)) = {ui, vi, vij: 1 ≤ i ≤ m, 1 ≤ j ≤ n} and E((Pm : Sn)) = {uiui+1, ujvj, vjvjk : 1 ≤ i ≤ m – 1, 1 ≤ j ≤ m, 1 ≤ k ≤ 

n}. Suppose m = 2, P2 : Sn = P6  2(n – 1)K1. Therefore 𝛾𝑠𝑟𝑑(𝑃2: 𝑆𝑛) = 𝛾𝑠𝑟𝑑(𝑃6) + 2(n – 1). Hence 𝛾𝑠𝑟𝑑(𝑃2) + 𝛾𝑠𝑟𝑑(𝑃2: 𝑆𝑛) = 2(n 

+ 2) and 𝛾𝑠𝑟𝑑(𝑃2) × 𝛾𝑠𝑟𝑑(𝑃2: 𝑆𝑛) = 4(n + 1). Suppose m = 3, V(P3 : Sn) is the unique strong restrained dominating set of P3 : Sn. 

Therefore   𝛾𝑠𝑟𝑑(𝑃3) + 𝛾𝑠𝑟𝑑(𝑃3: 𝑆𝑛) = 3(n + 3) and 𝛾𝑠𝑟𝑑(𝑃3) × 𝛾𝑠𝑟𝑑(𝑃3: 𝑆𝑛) = 9(n + 2). Suppose m ≠ 3, S = {vi, vij / 1 ≤ i ≤ n, 1 ≤ j 

≤ m} is the unique strong restrained dominating set of G and │S│ = m(n + 1). Therefore 𝛾𝑠𝑟𝑑(𝑃3𝑘) + 𝛾𝑠𝑟𝑑(𝑃3𝑘: 𝑆𝑛) = k(3n + 4) + 

2 and 𝛾𝑠𝑟𝑑(𝑃3𝑘) × 𝛾𝑠𝑟𝑑(𝑃3𝑘: 𝑆𝑛) = m(k + 2)(n + 1), k  2. Similarly 𝛾𝑠𝑟𝑑(𝑃3𝑘+1) + 𝛾𝑠𝑟𝑑(𝑃3𝑘+1: 𝑆𝑛) = 4(k + 1) + n(3k + 1) and 

𝛾𝑠𝑟𝑑(𝑃3𝑘+1) × 𝛾𝑠𝑟𝑑(𝑃3𝑘+1: 𝑆𝑛) = m(k + 3)(n + 1) and 𝛾𝑠𝑟𝑑(𝑃3𝑘+2) + 𝛾𝑠𝑟𝑑(𝑃3𝑘+2: 𝑆𝑛) = 2(2k + 3) + n(3k + 2) and 𝛾𝑠𝑟𝑑(𝑃3𝑘+2) × 

𝛾𝑠𝑟𝑑(𝑃3𝑘+2: 𝑆𝑛) = m(k + 4)(n + 1), k  1. Hence the theorem.   

 

Definition 2.16: The coconut tree graph T(n, m) is obtained by joining the central vertex of the star K1,m and a pendent vertex of a 

path Pn by an edge. 
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Theorem 2.17:   When k  1,  

𝛾𝑠𝑟𝑑(𝑃𝑛) + 𝛾𝑠𝑟𝑑(𝑇(𝑛,𝑚)) = {

𝑚 + 5 𝑖𝑓 𝑛 = 2
2𝑘 +𝑚 + 5 𝑖𝑓 n = 3𝑘, 3𝑘 + 1

2𝑘 + 𝑚 + 7 𝑖𝑓 𝑛 = 3𝑘 + 2
 

𝛾𝑠𝑟𝑑(𝑃𝑛) × 𝛾𝑠𝑟𝑑(𝑇(𝑛,𝑚)) = 

{
 

 
2(𝑚 + 3) 𝑖𝑓 𝑛 = 2

(𝑘 + 2)(𝑘 +𝑚 + 3) 𝑖𝑓 𝑛 = 3𝑘

(𝑘 + 3)(𝑘 + 𝑚 + 2) 𝑖𝑓 𝑛 = 3𝑘 + 1

(𝑘 + 4)(𝑘 +𝑚 + 3) 𝑖𝑓 𝑛 = 3𝑘 + 2  

 

 

Proof: Let G be a coconut tree T(n, m). Let v1, v2, …vn be the vertices of path Pn, u be the central vertex of K1,m and u1, u2,…,um 

be the pendent vertices of K1,m. The vertices u and vn is joined by an edge. The subgraph H induced by the vertices v1, v2, … vn, u, 

u1 is the path Pn+2. Let S be the strong restrained dominating set of Pn+2. The vertices of S together with the pendent vertices u2, u3, 

…. um form a strong restrained dominating set T of G and │T│ = │S│+ m – 1. Therefore 𝛾𝑠𝑟𝑑(𝑃2) + 𝛾𝑠𝑟𝑑(𝑇(2,𝑚)) = m + 5, 

𝛾𝑠𝑟𝑑(𝑃2) × 𝛾𝑠𝑟𝑑(𝑇(2,𝑚)) = 2(m+3). If n = 3k, k  1, then 𝛾𝑠𝑟𝑑(𝑃𝑛) + 𝛾𝑠𝑟𝑑(𝑇(𝑛,𝑚)) = 𝛾𝑠𝑟𝑑(𝑃3𝑘+2) + 𝛾𝑠𝑟𝑑(𝑇(3𝑘,𝑚)) = 2k + m + 

5, 𝛾𝑠𝑟𝑑(𝑃𝑛) × 𝛾𝑠𝑟𝑑(𝑇(𝑛,𝑚)) = (k + 2) (k + m + 3). If n = 3k + 1, k  1 then 𝛾𝑠𝑟𝑑(𝑃𝑛) + 𝛾𝑠𝑟𝑑(𝑇(𝑛,𝑚)) = 𝛾𝑠𝑟𝑑(𝑃3(𝑘+1)) + 𝛾𝑠𝑟𝑑(𝑇(3𝑘 +

1,𝑚)) = 2k + m + 5, 𝛾𝑠𝑟𝑑(𝑃𝑛) × 𝛾𝑠𝑟𝑑(𝑇(𝑛,𝑚)) = (k + 3) (k + m + 2) and if n = 3k + 2, k  1 then 𝛾𝑠𝑟𝑑(𝑃𝑛) + 𝛾𝑠𝑟𝑑(𝑇(𝑛,𝑚)) = 

𝛾𝑠𝑟𝑑(𝑃3(𝑘+1)+1) + 𝛾𝑠𝑟𝑑(𝑇(3𝑘 + 2,𝑚)) = 2k + m + 7, 𝛾𝑠𝑟𝑑(𝑃𝑛) × 𝛾𝑠𝑟𝑑(𝑇(𝑛,𝑚)) = (k + 4) (k + m + 3). Hence the theorem.    

 

Definition 2.18: The twig graph G obtained from the path Pn by attaching exactly two pendent edges to each internal vertex of the 

path. 

 

Theorem 2.19: Let G be a twig graph. When k  1, 

𝛾𝑠𝑟𝑑(𝑃𝑚) + 𝛾𝑠𝑟𝑑(𝐺) = {

4 if m = 2
8k if m = 3k

4(2k + 1) if m = 3k + 1

8(k + 1) if m = 3k + 2

 

γsrd(Pm) × γsrd(G) = {

4 if m = 2
7k2 + 12k − 4 if m = 3k

7k2 + 22k + 3 if m = 3k + 1
7k2 + 32k + 16 if m = 3k + 2

 

 

Proof: Let G be a twig graph. Let V(G) = {vi, uj, wj / 1 ≤ i ≤ n, 1 ≤ j ≤ n – 2} and E(G) = {vivi+1, ujvj+1, wjvj+1 / 1 ≤ i  ≤ n – 1, 1 ≤ j 

≤ n – 2}. Suppose m = 2, G = P2. Therefore γsrd(P2) + γsrd(G) = 4 and γsrd(P2) × γsrd(G) = 4. Suppose m  3, let S be a strong 

restrained dominating set of path Pm. The vertices of S together with pendent vertices {uj, wj / 1 ≤ j ≤ m – 2} form a strong restrained 

dominating set T of G and │T│ = │S│ + 2 (m – 2). Therefore γsrd(P3k) + γsrd(G) = 8k, γsrd(P3k) × γsrd(G) = 7k2 + 12k – 4, k  

1. Similarly γsrd(P3k+1) + γsrd(G) = 4(2k +1), γsrd(P3k+1) × γsrd(G) = 7k2 + 22k + 3 and γsrd(P3k+2) + γsrd(G) = 8(k + 1), 

γsrd(P3k+2) × γsrd(G) = 7k2 + 32k + 16, k  1. Hence the theorem. 

 

3. CONCLUSION 

 

In this paper, the authors studied sum and product of strong restrained domination number of path and its derived graphs. Similar 

studies can be made on this type for various derived graphs. 
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