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Abstract— The high standard of living enjoyed by every citizen and progress of any country largely depends on the 

availability of good quality and abundant availability of the electric power. Recently with the advancement of science and 

technology, the demand for electric power is increasing day by day at an exponential rate. Many consumer appliances 

demand quality power continuously for their operation. The performance of the end user equipment is heavily dependent 

on the quality of power supplied to it. But the quality of power delivered to the end user is affected by various external 

and internal factors. They are like voltage and frequency variations, faults, outages etc. These power quality problems 

reduce the life time and efficiency of the equipment. Thus, to enhance the performance of the consumer equipment and 

also the overall performance of the system these problems should be mitigated. The term power quality became most 

prominent in the power sector and both the electric power supply company and the end users are concerned about it. 

With the increasing use of nonlinear devices either for residential or industrial applications, the power distribution system 

is polluted with harmonics. Thus filters are very much essential for the harmonic compensation and improving the power 

quality and hence increases the reliability of the distribution system. The harmonic compensation can be obtained by 

Passive Filters (PF), Active Power Filters (APF) and hybrid filters (HPF). Active Power Filters (APF) are often used in 

applications where low current harmonics are desirable and improvement of quality of energy taken from the power grid 

are needed. This paper presents a comprehensive review of active filter (AF) configurations, control strategies, selection of 

components, other related economic and technical considerations, and their selection for specific applications. It is aimed 

at providing a broad perspective on the status of AF technology with power quality issues. 

Index Terms— Active power filters, active power line conditioners, harmonics and reactive power compensation, power 

quality, fully tuned branch. 

I. INTRODUCTION 

The electrical distribution network is a power delivery system consisting of cables that deliver electric power from its point of 

generation to the end users. Electrical distribution systems are primarily designed to meet the consumer's demands for energy. In 

recent years, more power electronics are being applied to distribution networks such as three phase voltage source inverter. The 
network also provides power supply to the non-linear loads such as three phase diodes or thyristor rectifiers for medium voltage 

drives or large power industrial applications. Since the action of power electronic devices is inherently non-linear, there arises a 

Power-Quality problem in the distribution network and the power supply connected with that network. 

Solid state control of ac power using thyristors and other semiconductor switches is widely employed to feed controlled electric 

power to electrical loads, such as adjustable-speed drives (ASD's), furnaces, computer power supplies, etc. Such controllers are 

also used in HV dc systems and renewable electrical power generation. As nonlinear loads, these solid-state converters draw 

harmonic and reactive power components of current from ac mains. In three-phase systems, they could also cause unbalance and 

draw excessive neutral currents. The injected harmonics, reactive power burden, unbalance, and excessive neutral currents cause 

low system efficiency and poor power factor. They also cause disturbance to other consumers and interference in nearby 

communication networks. Extensive surveys [1]—[15] have been carried out to quantify the problems associated with electric 

power networks having nonlinear loads. Conventionally passive L-C filters were used to reduce harmonics and capacitors were 
employed to improve the power factor of the ac loads. However, passive filters have the demerits of fixed compensation, large 

size, and resonance. The increased severity of harmonic pollution in power networks has attracted the attention of power 

electronics and power system engineers to develop dynamic and adjustable solutions to the power quality problems. 

The presence of harmonics in the power lines results in greater power losses in distribution, interference problems in 

communication systems and, sometimes, in operation failures of electronic equipments, which are more and more sensitive since 

they include microelectronic control systems, which work with very low energy levels. Because of these problems, the issue of 

the power quality delivered to the end consumers is, more than ever, an object of great concern. International standards 

concerning electrical power quality (IEEE-519, IEC 61000, EN 50160, among others) impose that electrical equipments and 

facilities should not produce harmonic contents greater than specified values, and also specify distortion limits to the supply 

voltage. Meanwhile, it is mandatory to solve the harmonic problems caused by those equipments already installed. Passive filters 

have been used as a solution to solve harmonic current problems, but they present several disadvantages, namely: they only filter 

the frequencies they were previously tuned for; their operation cannot be limited to a certain load; resonances can occur because 
of the interaction between the passive filters and other loads, with unpredictable results. To cope with these disadvantages, recent 

efforts have been concentrated in the development of Active filters. 
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II. RELATED WORK 

There are a large number of publications covering the power quality survey, measurements, analysis, cause, and effects of 

harmonics and reactive power in the electric networks [1]—[25]. AF's are basically categorized into three types, namely, two-wire 

(single phase), three-wire, and four-wire three-phase configurations to meet the requirements of the three types of nonlinear loads 

on supply systems. Single-phase loads, such as domestic lights and ovens, TV's, computer power supplies, air conditioners, laser 

printers, and Xerox machines behave as nonlinear loads and cause power quality problems. Single-phase (two wire) AF's are 
investigated [26]-[55] in varying configurations and control strategies to meet the needs of single-phase nonlinear loads. Starting 

in 1971, many configurations, such as the active series filter [48], active shunt filter [26]-[47], and combination of shunt and 

series filter [39] have been developed and commercialized also for uninterruptible power supply (UPS) applications [50], [52], 

[53]. Both concepts based on a current source inverter (CSI) with inductive energy storage and a voltage-source inverter (VSI) 

with capacitive energy storage are used to develop single phase AF’s Many control strategies such as instantaneous reactive 

power theory initially developed by Akagi et al. [56], synchronous frame d-q theory [57], synchronous detection method [58], and 

notch filter method are used in the development of three-phase AF's. 

III. CONFIGURATIONS 

AF's can be classified based on converter type, topology, and the number of phases. The converter type can be either CSI or VSI 

bridge structure. The topology can be shunt, series, or a combination of both. The third classification is based on the number of 

phases, such as two-wire (single phase) and three- or four-wire three-phase systems. 

1. Converter-Based Classification 

There are two types of converters used in the development of AF's. Fig. 1 shows the current-fed pulse width modulation (PWM) 

inverter bridge structure. It behaves as a nonsinusoidal current source to meet the harmonic current requirement of the nonlinear 

load. A diode is used in series with the serf commutating device (IGBT) for reverse voltage blocking. However, GTO-based 
configurations do not need the series in the development of three-phase AF's. diode, but they have restricted frequency of 

switching. They are considered sufficiently reliable [59], [60], but have higher losses and require higher values of parallel ac 

power capacitors. Moreover, they cannot be used in multilevel or multistep modes to improve performance in higher ratings.  

The other converter used as an AF is a voltage-fed PWM inverter structure, as shown in Fig. 2. It has a serf-supporting dc voltage 

bus with a large dc capacitor. It has become more dominant, since it is lighter, cheaper, and expandable to multilevel and 

multistep versions, to enhance the performance with lower switching frequencies. It is more popular in UPS based applications, 

because in the presence of mains, the same inverter bridge can be used as an AF to eliminate harmonics of critical nonlinear 

loads. 

 
Fig 1 Current-fed-type AF. 

 
Fig 2 Voltage-fed-type AF. 

 

2. Configuration-Based Classification 

APF’s can be classified based on converter type, topology, and the number of phases [61, 62]. The converter type is mainly two 

types:  
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 voltage source inverter (VSI)  

 Current source inverter (CSI).  

The topology of APF is classified in to three types.  

 Series active power filters (Se APF).  

 Shunt active power filters (Sh APF).  

 Hybrid active power filters (HAPF).  

Finally based on the phases the APF mainly two types:  

 Two-wire (single phase) system.  

 Three or four wire three phase system.  

2.1 Series Active Power Filter (series APF)  

The aim of the series APF is to locally modify the impedance of the grid. It is considered as harmonic voltage source which 

cancel the voltage perturbations which come from the grid or these created by the circulation of the harmonic currents into the 

grid impedance. However, series APFs cannot compensate the harmonic currents produced by the loads [63, 64] Fig. 3 shows 
Series APF connected to the network. 

 

Fig 3 Series APF connected to the network 

2.2 Shunt Active Power Filter (shunt APF)  

The shunt APFs are connected in parallel with the harmonic producing loads. They are expected to inject in real time the 

harmonic currents absorbed by the pollutant loads. Thus, the grid current will become sinusoidal [65, 66]. 

 

Fig 4 Shunt APF connected to the network 

2.3 Hybrid Active Power Filter (HAPF)  

To reduce the cost of the static compensation, combination of static and PF is called as hybrid APF. The PPF are used to cancel 
the most relevant harmonics of the load, and the active filter is dedicated to improving the performance of PPF or to cancel other 

harmonics components. As a result, the total cost decreases without reduction of efficiency. Fig. 5 and Fig. 6 shows the usual 

hybrid topology [67, 68]. 
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Fig 5 Parallel of SAPF and PPF 

 

Fig 6 Series APF with PPF 

 

IV. CONTROL STRATEGIES 

Control strategy is the heart of the AF and is implemented in three stages. In the first stage, the essential voltage and current 

signals are sensed using power transformers (PT's), CT's, Hall-effect sensors, and isolation amplifiers to gather accurate system 

information. In the second stage, compensating commands in terms of current or voltage levels are derived based on control 

methods [69]-[85] and AF configurations. In the third stage of control, the gating signals for the solid state devices of the AF are 

generated using PWM, hysteresis, sliding-mode, or fuzzy-logic-based control techniques. The control of the AF's is realized using 

discrete analog and digital devices or advanced microelectronic devices, such as single-chip microcomputers, etc. 

1. Signal Conditioning 

Several instantaneous voltage and current signals are required for the purpose of implementation of the control algorithm. These 

signals are also useful to monitor, measure, and record various performance indexes, such as total harmonic distortion (THD), 
power factor, active and reactive power, etc. The typical voltage signals are ac terminal voltages and voltages across series 

elements. The current signals to be sensed are load currents, supply currents, compensating currents, and dc-link current of the 

AF. Voltage signals are sensed using either PT's or Hall effect voltage sensors or isolation amplifiers. Current signals are sensed 

using CT's and/or Hall-effect current sensors. The voltage and current signals are sometimes filtered to avoid noise problems. The 

filters are either hardware based (analog) or software based (digital) with either low-pass, high-pass, or bandpass characteristics.  

2. Derivation of Compensating Signals 

The control strategies to generate compensation commands are based on frequency-domain or time-domain  correction 

techniques. 

1) Compensation in Frequency Domain: Using the Fourier transformation, the compensating harmonic components are separated 

from the harmonic-polluted signals and combined to generate compensating commands. The device switching frequency of the 

AF is kept generally more than twice the highest compensating harmonic frequency for effective compensation. The on-line 
application of Fourier transform (solution of a set of nonlinear equations) is a cumbersome computation and results in a large 

response time. 

2) Compensation in Time Domain: There is a large number of control methods in the time domain, which are known as 

instantaneous "p-q" theory [59], [86], [87], synchronous d-q reference frame method [19], [20], synchronous detection method 

[88], [89], notch filter method [90], [91], P-I controller [51], sliding mode controller [51]. The instantaneous active and reactive 

power (p-q) theory [92] has been widely used. The instantaneous active and reactive power can be computed in terms of 

transformed voltage and current signals. From instantaneous active and reactive powers, harmonic active and reactive powers are 

extracted using low-pass and high-pass filters. 

 

V. INSTANTANEOUS REAL AND REACTIVE POWER THEORY (P-Q METHOD) 

This theory takes into account the instantaneous reactive power arises from the oscillation of power between source and load and 

it is applicable for sinusoidal balanced/unbalanced voltage but fails for non-sinusoidal voltage waveform. It basically 3 phase 
system as a single unit and performs Clarke’s transformation (a-b-c coordinates to the α-β-0 coordinates) over load current and 
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voltage to obtain a compensating current in the system by evaluating instantaneous active and reactive power of the network 

system. 

The p-q method control strategy in Algorithm form is shown in Fig. 7 

This theory works on dynamic principle as its instantaneously calculated power from the instantaneous voltage and current in 3 

phase circuits. Since the power detection taking place instantaneously so the harmonic elimination from the network take place 

without any time delay as compared to other detection method.  
Although the method analysis the power instantaneously yet the harmonic suppression greatly depends on the gating sequence of 

three phase IGBT inverter which is controlled by different current controller such as hysteresis controller, PWM controller, 

triangular carrier current  controller. But among these hysteresis current controlled method is widely used due to its robustness, 

better accuracy and performance which give stability to power system. 

 

Fig 7 P-Q method control strategy 

VI. PERFORMANCE EVALUATION 

1. Total harmonic distortion (THD)  

THD of a signal is a measurement of the harmonic distortion present in current or voltage. It is defined as the ratio of the sum of 

the powers of all harmonic components to the power of the fundamental frequency 

 
Where  

I1 is the fundamental component of the current  

In is the total current 
Case study on the IAF method is performed from the following three aspects: 1) filtering performance with comparison to the 

APF method; 2) dynamic response when applying the IAF method in the distribution network; and 3) dynamic response to 

variation of the nonlinear load. 

a)  Filtering Performance 

The total harmonic distortion (THD) is 20.26%. When using the IAF method, the harmonic currents in the grid winding may get 

suppressed and the THD can be reduced to nearly 4.18%. 

b)  Dynamic Response When Switching on the FT Branch 

The branch can attract the harmonic components from the load side; thus, the harmonic currents in the grid winding must get 

reduced. 

c)  Dynamic Response to Nonlinear Load Variation 

The IAF can track the load variation and the FT branch attracts more harmonic currents, thus, the current waveform in the grid 

winding of the converter transformer should give a good sinusoid. 
VII. CONCLUSIONS 

Active filters are an up-to-date solution to power quality problems. Shunt active filters allow the compensation of current 

harmonics and unbalance, together with power factor correction, and can be a much better solution than the conventional 

approach (capacitors for power factor correction and passive filters to compensate for current harmonics). This paper presents the 

p-q theory as a suitable tool to the analysis of non-linear three-phase systems and for the control of active filters. 

Based on this theory, two control strategies for shunt active filters were described, one leading to constant instantaneous supply 

power and the other to sinusoidal supply current. The implementation of active filters based on the p-q theory are cost-effective 

solutions, allowing the use of a large number of low-power active filters in the same facility, close to each problematic load (or 

group of loads), avoiding the circulation of current harmonics, reactive currents and neutral currents through the facility power 

lines. 
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