A Dual Switch Dc-Dc Converter with Coupled Inductor and Charge Pump for High Step up Voltage Gain

Anitha K, Mrs.RahumathBeeby
PG scholar, Associate Professor
Mangalam College of Engineering, Ettumanoor

Abstract—This paper proposes a dual switch dc-dc converter with high step up voltage gain for solar application. The main features of this converter are the dual switch structure, three winding coupled inductor and charge pump. The proposed converter can provide a high voltage gain with small duty cycle which is helpful to reduce the peak current through the power device. The dual switch structure reduces the voltage/current stress of the power switches. The charge pump is used to add the voltage conversion ratio. All the diodes are achieving Zero Current Shutting off. We can use this converter to boost the voltage of Green Energy sources such as Photovoltaic cell and Fuel cell. Simulation is done in MATLAB/SIMULINK for the proposed converter and a comparison of the voltage gain of proposed converter with previous high step up converter was also done in this paper.

Index Terms—Charge pump, coupled inductor, zero current shutting off (ZCS), coupled inductor, Below resonance frequency mode (BRF).

I. INTRODUCTION

The green energy sources such as Photovoltaic cell and fuel cell are more popular nowadays because of environment pollution and energy shortage. However the output of these Green energy sources seems to be very low (lower than 50 V DC) compared to the dc bus voltage (200 or 400 V DC). So we need a high step-up voltage gain dc-dc converter with high efficiency to boost the voltage, so that these green energy can be connected to the grid.

Among the non-isolated dc-dc converters, the boost converter is usually used for voltage step up. However, the duty cycle will approach to unity when the output voltage is much higher than the input voltage. Thus, the current triple of the inductor and current stress of the power device are large, which results in large conduction loss, switching loss, and low efficiency [6].

The common high step-up voltage gain dc-dc converter can be classified into four species: the cascade Boost topology, the switched-cell Boost topology, the coupled-inductor Boost topology, and the mixture of these three. By cascading another boost converter, a high voltage gain can be easily obtained, but too many components are required, results in high cost and low overall efficiency [2]. With the series and parallel connection of the switched cell, we can achieve a high voltage gain, however, the voltage-conversion ratio is difficult and the pulsating voltage or pulsating current will result in more electromagnetic interference.

In order to overcome the drawbacks mentioned in the previous literature this paper proposes a dual switch dc-dc converter with three winding coupled inductor and charge pump to boost the voltage. The proposed converter, when compared to the boost converter, can provide a higher voltage gain with a lower voltage/current stress of the switches. The magnetic components can be integrated into one magnetic core, which is helpful to simplify the structure. Taking the advantages of the leakage inductor, all the diodes can achieve the Zero Current Shutting off (ZCS) to reduce the loss.

II. PRINCIPLE OF OPERATION OF PROPOSED CONVERTER

Fig.1 shows the circuit diagram of the proposed converter. V_i is the input voltage, S_1 and S_2 are the dual switches which operate under same gate signal. The capacitors C_1 and C_2 are used to absorb the energy of leakage inductor and clamp the voltage across S_1 and S_2. C_3 is the capacitor of charge pump, which is used to add the voltage conversion ratio. N_1, N_2, and N_3 are the windings of the three-winding-coupled inductor. The turns ratio of N_1, N_2 and N_3 is 1:1:n. C_o is the output filter capacitor.

In order to simplify the analysis we have to assume that,
1) The dual switches structure shares the same gate signal

2) The capacitance of C_1, C_2, and C_o are largely enough, that the voltage V_{c1}, V_{c2}, and V_o could be treated as a constant.

A resonance loop is formed by the leakage inductor L_k and the charge pump C_3. According to the relationship between the resonance period and the on state period (DT_s), the proposed converter can operate in two modes: If $\pi\sqrt{L_k C_3} > DT_s$, the converter operates in the below resonance frequency mode (BRF mode). If $\pi\sqrt{L_k C_3} < DT_s$, the converter operates in over resonance frequency mode (ORF mode).

III MODES OF OPERATION

Here each mode is explained on the basis that the converter operates in below resonance frequency (BRF) mode.

A) Mode 1

During this mode the switches S_1 and S_2 start to conduct. The equivalence circuit is shown in fig. 2. The voltage across the switches decreases to zero. With the help of leakage inductor L_k, the current through the turns N_1 and N_2 increase from zero, which is helpful to reduce the switching loss. The diodes D_1, D_2, and D_3 are reverse-biased, while D_4 is conducting. The leakage inductor L_k and charge pump C_3 begins to resonate. Since this time interval is too short that the leakage inductor current i_{L_k} drops almost at a constant slope.

![Fig.2 Operation of proposed converter in mode1](image)

B) Mode 2

During this stage, S_1 and S_2 remains in conduction, the equivalence circuit is shown in Fig. 3. At the time of t_1, the leakage inductor current i_{L_k} decreases to zero, D_4 turns OFF with ZCS, and then, i_{L_k} keeps falling, D_3 turns ON, L_k and C_3 are still in resonance state.

The state equations of resonant circuit from t_1 to t_2 can be written as follows:

\[
L_k \frac{di_{L_k}}{dt} = V_{c3} - \pi V_i - V_{c1} \quad (1)
\]

\[
C_3 \frac{dV_{c3}}{dt} = -i_{L_k} \quad (2)
\]

![Fig.3 Operation of proposed converter in mode2](image)

C) Mode 3

The equivalent circuit is shown in Fig. 4. At the time of t_2, S_1 and S_2 are turned OFF. N_1 and N_2 transfer energy to the parasitic capacitors of S_1 and S_2, the parasitic capacitors keep charging until D_1 and D_2 begins to conduct.
D) Mode 4

The equivalent circuit is shown in Fig. 5. At the time of t_3, N_1 and N_2 transfer energy to the clamping capacitors C_1 and C_2. C_3 charges the leakage inductor L_k in a resonance way, considering this time interval is extremely short, the leakage inductor current i_{L_k} rises almost at a constant slope.

E) Mode 5

The equivalent circuit is shown in Fig. 6. At the time of t_4, the leakage inductor current i_{L_k} rises to zero, D_3 turns OFF with ZCS, then i_{L_k} keeps rising and turns to positive, N_1 and N_2 keeps transferring energy to the clamping capacitors C_1 and C_2. L_k and C_3 are still in resonance state, the state equations of resonant circuit can be written as follows:

\[
L_k \frac{di_{L_k}}{dt} = nV_{c1} + V_i + Vc2 + Vc3 - V_o \tag{3}
\]

\[
C_3 \frac{dv_{c3}}{dt} = -i_{L_k} \tag{4}
\]

A) Mode 6

The equivalence circuit is shown in Fig. 7. At the time of t_5, the current through N_1 and N_2 decrease to zero, D_1 and D_2 turn OFF with Zero current shutting off.
IV ANALYSIS OF THE CIRCUIT

To simplify the analysis, the leakage inductances of the coupled inductor are neglected in the steady-state analysis. The operation modes can be simplified into two modes.

When S1 and S2 turns ON, the magnetising inductor is charged, the voltage across the magnetizing inductor could be expressed as:

\[V_{Lm} = nV_i \] \hspace{1cm} (5)

The turns N2, the power switch S1, the diode D2, and the clamping capacitor C2 forms a Buck-Boost converter; the turns N1, the power switch S2, the diode D1, the clamping capacitor C1, and the capacitor C0 forms a Boost converter.

\[V_{c1} = \frac{1}{(1-D)}V_i - V_i = \frac{D}{(1-D)}V_i \] \hspace{1cm} (6)

\[V_{c2} = \frac{D}{(1-D)}V_i \] \hspace{1cm} (7)

The voltage across the charge pump C3 is

\[V_{c3} = \frac{D}{(1-D)}V_i + nV_i \] \hspace{1cm} (8)

While during the OFF state, the magnetizing inductor is discharged, the voltage across the magnetizing inductor is

\[V_{Lm} = V_i + V_{c2} + V_{c3} - V_o = \frac{1+D}{1-D}V_i + nV_i - V_o \] \hspace{1cm} (9)

Using the inductor volt-second balance principle to the magnetizing inductor Lm, the following equations can be expressed as:

\[\int_0^{DT_1} nV_i dt + \int_0^{DT_2} (V_i + V_{c2} + V_{c3} - V_o) dt = 0 \] \hspace{1cm} (10)

Substituting the expressions for Vc2 and Vc3 in above equation and solving for Vo,

\[V_o = \frac{V_i(1+n+D)}{(1-D)} \] \hspace{1cm} (11)

IV SIMULATION RESULTS

The simulation is done in MATLAB Simulink and a comparison of the voltage gain of the proposed converter with previous Integrated Boost Flyback converter has been done. The specification and ratings of the components used in simulation are listed below.
Table 1: Parameters specification

<table>
<thead>
<tr>
<th>Components</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>30 V</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>50 kHz</td>
</tr>
<tr>
<td>Magnetizing inductor, Lm</td>
<td>1530μH</td>
</tr>
<tr>
<td>Leakage inductor, Lk</td>
<td>25μH</td>
</tr>
<tr>
<td>Clamping capacitor C1,C2</td>
<td>4.7μF</td>
</tr>
<tr>
<td>Charge pump, C3</td>
<td>3μF</td>
</tr>
<tr>
<td>Filter capacitor, C0</td>
<td>470μF</td>
</tr>
<tr>
<td>Load resistor</td>
<td>320Ω</td>
</tr>
</tbody>
</table>

Fig. 9 shows the input voltage waveform of proposed converter. Input voltage is 30V dc.

Fig. 10 shows the output voltage waveform of proposed converter. The steady state value of output voltage is 354.6 V for an input voltage of 30 V and duty ratio 0.65, providing a high voltage gain.

Fig. 11 shows the output current waveform of proposed converter. The steady state value of output current is 1.108 A for an input voltage of 30V and duty ratio 0.65.

Fig. 12 shows the comparison of output voltages of proposed converter and IBFC.
Fig. 12 shows the comparison of output voltages of proposed converter and Integrated Boost Flyback converter. The steady state value of output voltages of proposed converter and IBFC are 354 V and 252 V respectively for an input voltage of 30 V and duty ratio 0.65.

![Image](image_url)

Fig. 13 Comparison of output currents of proposed converter and IBFC

Fig. 13 shows the output currents of Integrated Boost Flyback converter and proposed converter. The steady state value of output currents of proposed converter and IBFC are 1.15 A and 1.3 A respectively.

![Image](image_url)

Table 2. Comparison of voltage gain

<table>
<thead>
<tr>
<th>Topology</th>
<th>Output Voltage Equation</th>
<th>Output Voltage Simulation Value</th>
<th>Voltage Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated boost flyback converter</td>
<td>$V_o = V_{in} \frac{1 + D N_2}{N_1}$</td>
<td>255 V</td>
<td>8.5</td>
</tr>
<tr>
<td>Proposed converter</td>
<td>$V_o = \frac{V_{in}(1 + n + 1)}{n(1 - D)}$</td>
<td>355 V</td>
<td>11.83</td>
</tr>
</tbody>
</table>

V. CONCLUSION

For the application in Green energy sources such as Photovoltaic cell and fuel cell, a high voltage gain converter is introduced in this paper, which consists of a dual switches structure with coupled inductor and charge pump. This converter can achieve a high gain with a small duty cycle which helps to reduce the peak current through the device. The dual switches structure reduces the voltage/current stress of the power switches. The reverse recovery problem of the diode is reduced by the leakage inductance. So MOSFET with low on-state resistance RDS ON can be used. The charge pump is used to add the voltage conversion ratio. So the proposed converter can provide high voltage gain with reduced voltage/current stress of the switches compared with conventional Integrated Boost Flyback Converter. The simulation results prove the same.

REFERENCES