284

Comparative Study of Flat Slab Building with and Without Shear Wall to earthquake Performance

¹Kavish Patwari, ²L. G. Kalurkar

¹Student M. E Structure, ²Assistant Professor JNEC, Aurangabad

Abstract: In last two decades there is a high increase in the number of tall buildings, both residential and commercial, and modern trend is towards high rise structures. Flat slab construction is most widely used systems in RCC in offices, residential and industrial buildings in every parts of the world. This system has wide advantages that it reduces cost of form work and construction time, easy installation and requires the least story height. The flat plate/ slab system, in which columns directly support floor slabs without beams. Shear walls are comparatively thin, vertically deep reinforced column used in structure which provide stability to structures from lateral loads like wind, seismic loads etc. In the present work, the combined effect of with and without shear wall of flat slab building on the seismic behavior of high rise building with various positions of shear wall studied. For that, 11 storey model is created in Etabs. To study the effect of different location of shear wall on high rise structure, linear dynamic analysis (Response spectrum analysis) in software ETABs is carried out. Seismic parameters like time period, base shear, storey displacement and storey drift are checked out.

Keywords: Flat slab, shear wall, response spectrum method, ETABs, base shear, time period

I. INTRODUCTION

In tall buildings lateral loads are premier one which will increase rapidly with increase in height. The design takes care of the requirements of strength, rigidity and stability. The most common loads resulting from the effect of gravity are dead load, live load and snow load. Besides these vertical loads, buildings are also subjected to lateral loads caused by wind, blasting or earthquake. Lateral loads can develop high stresses, produce sway movement or cause vibration. Therefore, it is very important for the structure to have sufficient strength against vertical loads together with adequate stiffness to resist lateral forces.

Fig. 1 Building with flat slab and flat plate

I.1 FLAT PLATE STRUCTURE

Flat Plates are solid concrete slabs of uniform depths that transfer loads directly to the supporting columns without the aid of beams or capitals or drop panels. Flat plates are probably the most commonly used slab system today for multi-storey reinforced concrete hotels, motels, apartment houses, hospitals, and dormitories. The main disadvantage in Flat slabs and Flat plates is their lack of resistance to lateral loads, hence special features like shear walls, structural Walls are to be provided if they are to be used in high rise constructions. Flat plate is the term used for a slab system without any column flares or drop panels. Although column patterns are usually on a rectangular grid, flat plates can be used with irregularly spaced column layouts. In flat plate structure the loads directly taking by supporting columns. It requires the simple formwork and flat plates will usually result in such economical construction. Concrete slabs are often used to carry vertical loads directly to walls and columns without the use of beams and girders such a system called a flate plate.

II. ANALYTICAL WORK

Response spectrum method is used for the analysis of structure. An 11 storey building with RC shear wall and without shear wall is taken for this study. The different location of shear wall is used to study the effect of changing location. The presence of Shear Wall

is a structural system providing stability against wind, earthquake and blast and deriving its stiffness from inherent structural forms. The behavior of building is studied for different parameters like story drift, story shear, time period; etc.

II.1 TYPES OF CASES USED FOR ANALYSIS OF STRUCTURE

There are different cases considered to analyze 15-storey structure so that proper provision of shear wall can be predicted.

- 1. Performance of flat slab building with C type shear wall.
- 2. Performance of flat slab building without shear wall.
- 3. Building with L type shear wall and flat slab.
- 4. Building with shear wall along periphery with flat slab.
- 5. Building with non parallel shear wall along periphery wit flat slab.

Following figures shows the model of different cases done in ETABS software.

Fig. 4 Building with non parallel wall with flat slab

Fig. 5 Building with shear wall at periphery with flat slab

285

II.2 Structural Data

Type of structure	RCC 11 Story
Zone	III
Floor to floor height	3M
Wall thickness	230MM
Thickness of slab	200 MM
Live load	3 KN/m^2
Floor finish	1 KN/m^2
Column size	500x500 mm

Table 1 Details of structural data

III. RESULTS AND DISCUSSION

III.1 Story Displacements for Flat Plate Building with and without Shear Wall

Table 2 Story displacements for flat plate building with and without shear wall

Storey level (mm)	Storey displacements without shear wall (m)	Storey displacements with shear wall(m)		
0	0	0		
3000	0.0107	0.0018		
6000	0.0235	0.005		
9000	0.0367	0.0093		
12000	0.05	0.0145		
15000	0.0633	0.0203		
18000	0.0764	0.0265		
21000	0.0892	0.0331		
24000	0.1016	0.0398		
27000	0.1133	0.0464		
30000	0.1242	0.053		
33000	0.1341	0.0593		

Fig 6 Story displacement (m) graph for building with and without shear wall

III.2 Story Shear for Flat Plate Building with and without Shear Wall

Storey level (mm)	story shear without shear wall (KN)	story shear with shear wall (KN)		
0	3973.52	4096.20		
3000	3970.29	4092.87		
6000	3962.75	4085.10		
9000	3957.38	4079.52		
12000	3928.33	4049.49		
15000	3876.67	3996.11		
18000	3795.97	3912.69		
21000	3679.75	3792.57		
24000	3521.57	3629.08		
27000	3314.96	3415.54		
30000	3053.47	3145.28		
33000	2730.65	2811.62		

Table 3 story shear with and without shear wall

Fig. 7 Storey shear with and without shear wall

III.3 Time Period for Flat Plate Building with and without Shear Wall

1 able + 1 line period with and without shear wan	Table 4 Time	period	with and	without	shear	wall
---	--------------	--------	----------	---------	-------	------

Parameter	Structure without shear wall	Structure with shear wall
Time	2.7486 sec	2.6175 sec

IJSDR1606051 International Journal of Scientific Development and Research (IJSDR) <u>www.ijsdr.org</u>	
--	--

Fig. 8 Time period (sec) with and without shear wall

III.4 Story Drift for Flat Plate Building with and without Shear Wall

Storey level (mm)	Drift without shear wall	Drift with shear wall
-		
0	0.0001324	0.0001229
3000	0.003581	0.001372
6000	0.004236	0.001806
9000	0.004402	0.002235
12000	0.00444	0.002517
15000	0.004427	0.002696
18000	0.004372	0.002798
21000	0.004273	0.002835
24000	0.004122	0.002818
27000	0.003914	0.00275
30000	0.003642	0.002636
33000	0.003299	0.002481

Table 5 Story drift with and without shear wall

4 EFFECT OF FLAT PLATE BUILDING FOR DIFFERENT POSITION OF SHEAR WALL

4.1 Story Displacement:

Storey level (mm)	Structure with L type shear wall (m)		Structure with shear wall along periphery (m)		Structure with non parallel shear wall along periphery (m)	
	EQ	WL	EQ	WL	EQ	WL
33000	0.0808	0.0128	0.057	0.009	0.0629	0.0097
30000	0.0708	0.0113	0.0498	0.0079	0.0549	0.0085
27000	0.0608	0.0099	0.0427	0.0069	0.047	0.0074
24000	0.0509	0.0084	0.0357	0.0059	0.0392	0.0063
21000	0.0414	0.0069	0.029	0.0048	0.0318	0.0052
18000	0.0323	0.0055	0.0227	0.0039	0.0248	0.0041
15000	0.024	0.0042	0.0168	0.0029	0.0183	0.0031
12000	0.0165	0.0029	0.0116	0.0021	0.0126	0.0022
9000	0.0101	0.0018	0.0071	0.0013	0.0077	0.0014
6000	0.005	0.0009	0.0036	0.0007	0.0039	0.0007
3000	0.0015	0.0003	0.0012	0.0002	0.0013	0.0002
000	0.00	0.00	0.00	0.00	0.00	0.00

Table 6 Variation of Storey displacement in both X and Y directions

Fig. 9 Variation of story displacement (M) graph in both X and Y direction for Earthquake and Wind load

4.2 Time Period

Table 7 Variation of time period in both X and Y directions

variation of time period in boar reader of the below is						
Structure with L type shear wall	Structure with shear wall alo	ng Structure with non parallel shear				
	periphery	wall along periphery				
2.1192 sec	1.7806 sec	1.8619 sec				

Fig. 10 Variation of Time period (Sec) for earthquake in both X and Y direction

4.3 Storey Drifts

Table 1.8 Variation of Storey drift in bour X and F directions								
Storey	level	Structure with	n L type shear	Structure wit	thshear wall	Structure with	non parallel	
(mm)		wall		along periphery	along periphery		periphery	
		EQ	WL	EQ	WL	EQ	WL	
33000		0.003349	0.00048	0.002387	0.000343	0.002668	0.000374	
30000		0.003337	0.000487	0.002369	0.000346	0.00264	0.000378	
27000		0.003281	0.00049	0.00232	0.000346	0.002578	0.000379	
24000		0.003177	0.000485	0.002237	0.000341	0.002479	0.000377	
21000		0.003015	0.000472	0.002116	0.00033	0.002337	0.00037	
18000		0.002792	0.000449	0.0 <mark>01</mark> 952	0.000313	0.00215	0.000356	
15000		0.002501	0.000414	0.001743	0.000287	0.001913	0.000306	
12000		0.002135	0.000364	0.001485	0.000252	0.001623	0.000267	
9000		0.001689	0.000298	0.001176	0.000206	0.00128	0.000218	
6000		0.001152	0.000211	0.000806	0.000148	0.000872	0.000155	
3000		0.000512	0.000101	0.000393	0.000079	0.000419	0.000081	
000		0.0000635	0.0000091	0.0000194	0.0000194	0.0000145	0.0000021	

able 1.8 Variation of Storey drift in both X and Y direction

V. CONCLUSION

Analysis of 11 stories RCC multistoried flat plate building is carried out by using response spectrum method. The following conclusions are drawn from the study.

The seismic responses namely base shear in X and Y directions for structure with shear wall are found to be 3.08% more than structure without shear wall, story displacement without shear wall along EQX is 48.52% more and along EQY is 53.36% more than displacement with shear wall.

1. For Structure with shear wall along periphery have story displacement is minimum. It is 29.13 % and

10.06 % less for Structure with shear wall along periphery than Structure with L type shear wall and Structure with non parallel shear wall along periphery respectively.

2. The values of storey drift for all the stories are found to be within the permissible limit i.e. not more than 0.004 times to storey height according to IS 1893 : 2002 (Part I)

3. Building with shear wall is preferred because of considerable difference in storey displacement, time period, base shear and storey drift.

4. Structure with shear wall along periphery is suitable for the effect of wind load and earthquake load on the performance of building.

REFERENCES

[1] Fayazuddin Ahmed Syed, B. Dean Kumar, Y. Chandrasekhar, B.L.P. Swami "Comparative Analysis Of Flat Plate Multistoried Frames With And Without Shear Walls Under Wind Loads" International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-2,

Issue-1, October 2012

[2] K S Sable, Er. V A Ghodechor, Prof. S B Kandekar "Comparative Study of Seismic Behavior of Multistory Flat Slab and Conventional Reinforced Concrete Framed Structures" International Journal of Computer Technology and Electronics Engineering (IJCTEE) ISSN 2249-6343 Volume 2, Issue 3, June 2012

[3] Mohamed Abdel-Basset Abdo "Modeling of Shear- Wall Dominant Symmetrical Flat-Plate Reinforced Concrete Buildings" International Journal of Advanced Structural Engineering 2012 4:2. (IJETT)

-Volume 10, Number 12 - Apr 2014, Page 565

[4] Navyashree K, Sahana T.S "Use of Flat Slabs in Multi-Storey Commercial Building Situated in High Seismic Zone" International Journal of Research in Engineering and Technology, eISSN: 2319-1163 pISSN: 2321-7308.

[5] P M B Raj Kiran Nanduri, Dr. B. Dean Kumar, Y. Chandrasekhar, Dr. B.L.P. Swami "Comparative Study Of Wind Load Analysis Of Flat Plate Multistoried Frames With And Without Reinforced Concrete In filled Walls" International Journal of Emerging Technology and Advanced Engineering ISSN 2250-2459, Volume 2, Issue 8, August 2012

[6] P. V. Sumanth Chowdary, Senthil Pandian. M "A Comparative Study on RCC Structure with and without Shear Wall" IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 02, 2014

[7] Rajib Kumar Biswas, Md. Meraj Uddin, Md. Arman Chowdhury, Md.Al-Imran Khan "Comparative Analysis Of a 15 Story Flat Plate Building With and Without Shear Wall And Diagonal Bracing Under Wind and Seismic Loads" IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE)e- ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 9, Issue 2Sep. - Oct. 2013, PP 97-101

[8] Rajib Kumar Biswas, Dr. Md. Mahmudur Rahman "Dynamic Analysis of High Rise Flat Plate Building with Different Retrofitting Systems" European academic research vol.I, Issuel1, February 2014.

[9] Sumit Pawah, Vivek Tiwari, Madhavi Prajapati "Analytical Approach To Study Effect Of Shear Wall On Flat Slab And Two Way Slab" International Journal of Emerging Technology and Advanced Engineering ISSN 2250-2459, Volume 4, Issue 7,

July 2014

[10] Shyam Bhat M, N.A.Premanand Shenoy, Asha U Rao "Earthquake Behaviour of Buildings with and Without Shear Walls" IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN: 2278- 1684, p-ISSN: 2320-334X

[11] Uttamasha Gupta, Shruti Ratnaparkhe, Padma Gome "Seismic Behaviour Of Buildings Having Flat Slabs With Drops" International Journal of Emerging Technology and Advanced Engineering, ISSN 2250- 2459, Volume 2, Issue 10, October 2012

[12] K. G. Patwari, L. G. Kalurkar, "Comparative study of RC Flat Slab & Shear wall with Conventional Framed Structure in High Rise Building" International Journal of Engineering Research, ISSN 2319- 6890, Volume 5, Issue 3, Feb 2016