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Abstract— This paper demonstrates the reversible logic 

synthesis for the n-to-2n decoder, where n is the number of 

data bits.The circuits are designed using only reversible 

fault tolerant Fredkin and Feynman double gates. Thus, 

the entire scheme inherently becomes fault tolerant. 

Algorithm for designing the generalized decoder has been 

presented. In addition, several lower bounds on the 

number of constant inputs, garbage outputs and quantum 

cost of the reversible fault tolerant decoder have been 

proposed. Transistor simulations of the proposed decoder 

are shown using standard p-MOS 901 and n-MOS 902 

model with delay of 0.030 ns and 0.12 μm channel length, 

which proved the functional correctness of the proposed 

circuits. The comparative results show that the proposed 

design is much better in terms of quantum cost, delay, 

hardware complexity and has significantly better 

scalability than the existing approach. 
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I.  INTRODUCTION 

Logic plays an extensively important role in low power 
computing as it recovers from bit loss through unique mapping 
between input and output vectors [1]. No bit loss property of 
reversible circuitry results less power dissipation than the 
conventional one [2]. Moreover, it is viewed as a special case 
of quantum circuit as quantum evolution must be reversible 
[3]. Over the last two decades, reversible circuitry gained 
remarkable interests in the field of DNA-technology [4], nano-
technology [5], optical computing [6], program debugging and 
testing [7], quantum dot cellular automata [8], discrete event 
simulation [9] and in the development of highly efficient 
algorithms [10]. 

On the other hand, parity checking is a popular mechanisms 
for detecting single level fault. If the parity of the input data is 
maintained throughout the computation, then intermediate 
checking wouldn’t be required and an entire circuit can 
preserve parity if its individual gate is parity preserving [11]. 

Reversible fault tolerant circuit based on reversible fault 
tolerant gates allows to detect faulty signal in the primary 
outputs of the circuit through parity checking [12]. Hardware 
of digital communication systems relies heavily on decoders 
as it retrieve information from the coded output. 

Decoders have also been used in the memory and I/O of 
microprocessors [13]. In [7], a reversible fault tolerant decoder 
was designed, but it was not generalized and compact. 
Therefore, this paper investigates the generalized design 
methodologies of reversible fault tolerant decoders.  

II. BASIC DEFINATIONS AND LITERATURE REVIEW 

This section formally defines reversible gate, garbage 
output, delay, hardware complexity and presents popular 
reversible fault tolerant gates along with their input-output 
specifications, transistor and quantum equivalent 
representations.  

A.  Reversible and Fault Tolerant  

An n×n reversible gate is a data stripe block that uniquely 
maps between input vector Iv = (I0, I1, ..., In−1) and output 
vector Ov = (O0,O1, . . . , On−1) denoted as Iv ↔ Ov. Two 
prime requirements for the reversible logic circuit are as 
follows [14]: 

 • There should be equal number of inputs and 
outputs. 

• There should be one-to-one correspondence 
between inputs and outputs for all possible input-
output sequences. 

A Fault tolerant gate is a reversible gate that constantly 
preserves same parity between input and output vectors. More 
specifically, an n × n fault tolerant gate clarify the following 
property between the input and output vectors [12]: 

I0 ⊕ I1 ⊕ ... ⊕ In−1 = O0 ⊕ O1 ⊕ ... ⊕ On−1                             (1) 

Parity preserving property of Eq.1 allows to detect a faulty 
signal from the circuit’s primary output. Researchers [11], 
[12], [15] have showed that the circuit consist of only 
reversible fault tolerant gates preserves parity and thus able to 
detect the faulty signal at its primary output. 

B.  Qubit and Quantum Cost 

The main difference between the qubits and conventional bits 
is that, qubits can form linear combination of states |0> or|1> 
called superposition, while the basic states |0> or |1> arean 
orthogonal basis of two-dimensional complex vector [3].A 
superposition can be denoted as, |ψ> = α|0> + β|1>,which 
means the probability of particle being measured in states 0 is 
|α|2, or results 1 with probability |β|2, and ofcourse |α|2 + |β|2 
= 1 [16]. Thus, information stored by a qubit are different 
when given different α and β. Because of such properties, 
qubits can perform certain calculations exponentially faster 
than conventional bits. This is one of the main motivation 
behind the quantum computing. Quantum computer demands 
its underneath circuitry be reversible [1]∼[6]. 

 The quantum cost for all 1×1 and 2×2 reversible gates are 
considered as 0 and 1, respectively [6]∼[14]. Hence, quantum 
cost of a reversible gate or circuit is the total number of 2×2 

quantum gate used in that reversible gate or circuit. 
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C. Delay, Garbage Output and Hardware Complexity 

The delay of a circuit is the delay of the critical path. The  
path with maximum number of gates from any input to any 
output is the critical path [1]. There may be more than one 
critical path in a circuit and it is an NP-complete problem to 
find all the critical paths [17]. So, researchers pick the path 
which is the most likely candidates for the critical paths [18]. 
Unused output of a reversible gate (or circuit) is known as 
garbage output, i.e., the output which are needed only to 
maintain the reversibility are the garbage output. The number 
of basic operations (Ex-OR, AND, NOT etc.) needed to 
realize the circuit is referred to as the hardware complexity of 
the circuit. Actually, a constant complexity is assumed for 
each basic operation of the circuit, such as, α for Ex-OR, β for 
AND, γ for NOT etc. Then, total number of operations are 
calculated in terms of α, β, and γ.  

D. Popular Reversible Fault Tolerant Gates 

1) Feynman Double Gate: Input vector (Iv) and output 

vector (Ov) for 3 × 3 reversible Feynman double gate (F2G) is 

defined as follows [19]: Iv = (a, b, c) and Ov = (a, a ⊕ b, a ⊕ 

c). Block diagram of F2G is shown in Fig. 1(a).  

Fig. 1(b) represent the quantum equivalent realization of F2G. 

From Fig. 1(b) we find that it is realized with two 2×2 Ex-OR 

gate, thus its quantum cost is two (Sec. II-B). According to our 

design procedure, twelve transistors are required to realize 

F2G reversibly as shown in Fig. 1(c). Fig. 3(a) represents the 

corresponding timing diagram of F2G. 

 

 
Fig. 1: Reversible Feynman double gate (a) Block diagram 

(b)Quantum equivalent realization (c) Transistor realization 

 

2) Fredkin Gate: The input and output vectors for 3 × 3 

Fredkin gate (FRG) are defined as follows [20]: Iv = (a, b, c) 

and Ov = (a, a_b ⊕ ac, a_c ⊕ ab). Block diagram of FRG is 

shown in Fig. 2(a). Fig. 2(b) represents the quantum 

realization of FRG. In Fig. 2(b), each rectangle is equivalent to 

a 2 × 2 quantum primitives, therefore its quantum cost is 

considered as one [13]. Thus total quantum cost of FRG is 

five. To realize the FRG, four transistors are needed as shown 

in Fig. 2(c) and its corresponding timing diagram is shown in 

Fig. 3(b). 

 
Fig. 2: Reversible Fredkin gate (a) Block diagram (b) Quantum 

equivalent realization (c) Transistor realization 

 

 

Reversible Fredkin and Feynman double gate obey the rule 

of Eq.1. The fault tolerant (parity preserving) property of 

Fredkin and Feynman double is shown in Table. I. 

TABLE I: Truth table for F2G and FRG 

 
 

E. Decoder 

 Decoders are the collection of logic gates fixed up in a 

specific way such that, for an input combination, all outputs 

terms are low except one. These terms are the minterms. Thus, 

when an input combination changes, two outputs will change. 

Let, there are n inputs, so number of outputs will be 2n. There 

are several designs of reversible decoders in the literature. To 

the best of out knowledge, the designs from [7] is the only 

reversible design that preserve parity too. 



ISSN: 2455-2631                                                             © June 2016 IJSDR | Volume 1, Issue 6 

 

IJSDR1606029 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 144 

 

 

 
(a) 

 
(b) 

Fig. 3: Simulation with DSCH-2.7 [21] of the transistor 

realization of (a) Feynman double gate (b) Fredkin gate. 

III. PROPOSED REVERSIBLE FAULT TOLERANT DECODER  

Considering the simplest case, n=1, we have a 1-to-2 
decoder. Only a F2G can work as 1-to-2 Reversible Fault 
tolerant Decoder (RFD) as shown in Fig. 4(a) and its 
corresponding timing diagram is shown in Fig. 4(b). From 
now on,we denote a reversible fault tolerant decoder as RFD  

 

 

 

 

(b) 

Fig 4: Proposed 1-to-2 RFD (a) Architecture (b) 
Simulation with DSCH-2.7 [21]. 

The Fig. 5(a) and Fig. 5(d) represent the architecture of 2-
to-4 and 3-to-8 RFD, respectively. Timing diagram of Fig. 
5(a) is shown in Fig. 5(c). From Fig. 5(d), we find that 3-to-8 
RFD is designed using 2-to-4 RFD, thus a schema of Fig. 5(a) 
is created which is shown in Fig. 5(b). Algorithm 1 presents 
the design procedure of the proposed n-to-2n RFD. Primary 
input to the algorithm are n control bits. Line 6 of the 
proposed algorithm assigns the input to the Feynman double 
gate for the first control bit (S0), whereas line 9 assigns first 
two inputs to the Fredkin gates for all the remaining control 
bits. Line 10-12 assign third input to the Fredkin gate for n = 
2.  

 

 

 

 

 

 

 
Fig. 5: (a) Block diagram of the proposed 2-to-4 RFD. 

(b)Schematic diagram of 2-to-4 RFD. (c) Simulation with 
DSCH-2.7 [21] of 2-to-4 RFD. (d) Block diagram of the 
proposed 3-to-8 RFD. (e) Simulation with DSCH-2.7 [21] of 
3-to-8 RFD.(f) Block diagram of the proposed n-to-2n RFD.  
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While line 13-15 assigns third input to the Fredkin gate 
through a recursive call to previous RFD for n > 2. Line 18-19 
returns outputs. The complexity of this algorithm is O(n). 
According to the proposed algorithm architecture on n-to-2n 
RFD is shown in Fig. 5(e). In Sec. II-D, we present the 
transistor representations of FRG and F2G using MOS 
transistors. These representations are finally used to get the 
MOS circuit of the proposed decoder. Each of the proposed 
circuit are simulated with DSCH-2.7 [21]. This simulations 
also show the functional correctness of the proposed decoders. 
Table. II shows a comparative study of the proposed fault 
tolerant decoders with existing fault tolerant one. 

 

Theorem 1: An n-to-2n reversible fault tolerant decoder 
can be realized with at least n garbage outputs and 2n constant 
inputs, where n is the number of data bits. 

Proof: An n-to-2n decoder has n inputs and 2n outputs. Thus, 
to maintain the property of reversibility, there should be at 
least (2n−n) constant inputs. However, this (2n−n) constant 
inputs don’t preserve the parity. To preserve the parity, at least 
n more constant inputs are needed. So, there should be at least 
n garbage outputs. _ 

Example 1: Let the value of n be 1. Then, we have the 1-to-2 

reversible fault tolerant decoder. As shown in Sec. II, for a 

reversible circuit it is necessary to maintain the one-to-one 
correspondence between input and output vectors and thus, 
any reversible circuit should have equal number of inputs and 
outputs. In the 1-to-2 decoder, there are 2 primary outputs 
(O0, O1) but 1 input (S0), hence according to the property of 
reversibility, 1-to-2 reversible decoder should have at least 1 
constant input. The value of this constant input can be either 0 
or 1. Table. III1 shows that whatever the value of this constant 
input, it will never be able to preserve the parity between input 
and output vectors, which is the prime requirement of the 
reversible fault tolerant logic circuit. Therefore, to preserve 
the parity for the 1-to-2 reversible fault tolerant decoder we 
need at least one more constant input, i.e., at least 2 constant 
inputs are required for the 1-to-2 reversible fault tolerant 
decoder.  

 

Next, we must prove the existence of combinational circuit 
which can realize the reversible fault tolerant 1-to-2 decoder 
by 2 constant inputs. This can easily be accomplished by the 
circuit shown in Fig. 4(a). It can be verified that Fig. 4(a) is 
reversible and fault tolerant with the help of its corresponding 
truth table, there is no need to give more detail. 

Now, in 1-to-2 reversible fault tolerant decoder there are at 
least 2 constant inputs and 1 primary input, i.e., total of 3 
inputs. Thus, 1-to-2 reversible fault tolerant decoder should 
have at least 3 outputs, otherwise it will never comply with the 
properties of reversible parity preserving circuit. Among these 
3 outputs, only 2 are primary outputs. So, remaining 1 output 
is the garbage output, which holds Theorem 1 for n=1.  

Theorem 2: A 2-to-4 reversible fault tolerant decoder can 
be realized with at least 12 quantum cost. 

Proof: A 2-to-4 decoder has 4 different 2×2 logical AND 
operations. A reversible fault tolerant AND2 operation 
requires at least 3 quantum cost. So, 2-to-4 reversible fault 
tolerant decoder is realized with at least 12 quantum cost. 

Example 2: Fig. 5(a) is the proof for the existence of 2-to-4 
reversible decoder with 12 quantum cost. Next, we want to 
prove that it is not possible to realize a reversible fault tolerant 
2-to-4 decoder fewer than 12 quantum cost. In the 2-to-4 
decoder, there are 4 different 2 × 2 logical AND operations, 
e.g., S_1S_0, S_1S0, S1S_0, S1S0. It will be enough if we 
prove that it is not possible to realize a reversible fault tolerant 
2×2 logical AND with fewer than three quantum cost. 
Consider, 
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i. If we make use of one quantum cost to design the 
AND, that of course is not possible according to our 
discussion in Sec. II. 

ii. If we make use of two quantum cost to design AND, 
then we must make use of two 1 × 1 or 2 × 2 gates. 
Apparently two 1 × 1 gates can’t generate the AND. 
Aiming at two 2 × 2 gates, we have two 
combinations, which are shown in Fig. 6(a) and Fig. 
6(b). In Fig. 6(a), the output must be (a, ab) if the 
inputs are (a, b). The corresponding truth table is 
shown in Table. IV. 

 

Fig. 6: Combinations of the two 2 ×2 quantum primitive gates 

 

From Table. IV, we find that, outputs are not at all unique 
to its corresponding input combinations (1st and 2nd rows 
have the identical outputs for different input combinations). So 
it can’t achieve the reversible AND. For Fig. 6(b) if inputs are 
(a, b, c) then, the outputs of the lower level will be offered to 
the next level as a controlled input, this means that second 
output of Fig. 6(b) have to be ab, otherwise it will never be 
able to get output ab since third output of Fig. 6(b) is 
controlled by the second output, thereby according to Table. 
V, we can assert that the second combination is impossible to 
realize the AND no matter how we set the third output of Fig. 
6(b) (third column of Table. V), the input vectors will never be 
one-to-one correspondent with the output vectors. Therefore, 
we can conclude that, a combinational circuit for reversible 
fault tolerant 2 × 2 logical AND operation can’t be realized 
with less than three quantum cost.The above example clarifies 
the lower bound in terms of quantum cost of 2-to-4 RFD. 
Similarly, it can be proved that the n-to-2n RFD can be 
realized with 5(2n- 85 ) quantum cost, when n≥1, and by 
assigning different values to n, the validity of this equation can 
be proved. 

  

 

Lemma 1: An n-to-2n RFD can be realized with (2n-1) 
reversible fault tolerant gates, where n is the number of data 
bits. 

Proof: According to our design procedure, an n-to-2n RFD 
requires an (n − 1)-to-2n−1 RFD plus n number of Fredkin 
gates, which requires an (n − 2)-to-2n−2 RFD plus (n − 1) 
Frdekin gates and so on till we reach to 1-to-2 RFD.1-to-2 
RFD requires a reversible fault tolerant Feynman double gate 
only. Thus total number of gates required for an n-to-2n RFD 
is,  

 

 

Example 3: From Fig. 5(d) we find that the proposed 3-to-
8 RFD requires total number of 7 reversible fault tolerant 
gates. If we replace n with 3 in Lemma 1, we get the value 7 
as well. 

Lemma 2: Let, α, β, γ be the hardware complexity for a 
two-input Ex-OR, AND and NOT operation, respectively. 
Then an n-to-2n RFD can be realized with (2n+1 − 2)α + 
(2n+2 − 8)β + (2n+1 − 4)γ) hardware complexity, where n is 
the number of data bits. 

Proof: In Lemma 1, we proved that an n-to-2n RFD is 
realized with a F2G and (2n − 2) FRG. Hardware complexity 
of a FRG and a F2G are 2α+4β +2γ and 2α, respectively. 
Hence, hardware complexity for n-to-2n RFD is 

 

Example 4: Fig. 5(d) shows that the proposed 3-to-8 
reversible fault tolerant decoder requires six Fredkin gates and 
one Feynman double gate. According to our previous 
discussion in Sec. II, hardware complexity of a Feynman 
double gate is 2α, whereas, hardware complexity of a Fredkin 
gate is 2α + 4β + 2γ. Thus, the hardware complexity of Fig. 
5(d) is 6(2α + 4β + 2γ) + 2α = 14α + 24β + 12γ. In Lemma 2, 
if we put n = 3, we get exactly 14α + 24β + 12γ as well. 

IV. CONCLUSIONS AND FUTURE WORK 

The In this paper, we presented the design methodologies 
of an n-to-2n reversible fault tolerant decoder, where n is the 
number of data bits. We proposed several lower bounds on the 
numbers of garbage outputs, constant inputs and quantum cost 
and proved that the proposed circuit has constructed with the 
optimum garbage outputs, constant inputs and quantum cost. 
In addition, we presented the designs of the individual gates of 
the decoder using MOS transistors in order to implement the 
circuit of the decoder with transistors. Simulations of the 
transistor implementation of the decoder showed that the 
proposed fault tolerant decoder works correctly. The 
comparative results proved that the proposed designs perform 
better than its counterpart. We also proved the efficiency and 
supremacy of the proposed scheme with several theoretical 
explanations. Proposed reversible fault tolerant decoders can 
be used in parallel circuits [22], multiple-symbol differential 
detection [23], [24], network components [25] and in digital 
signal processing [26] etc. 
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