
ISSN: 2455-2631                                                                                                © May 2016 IJSDR | Volume 1, Issue 5 

 

IJSDR1605004 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 18 

 

Intrusion Detection & Prevention System: SQL 

Injection Attacks 
 

1
Amrita Bhat, 

2
Priyanka Mumbarkar 

 
Sardar Patel Institute of Technology 

Mumbai, India

 

 

Abstract— Web-based applications are emerging on a larger 

scale in today’s world in various areas covering e-commerce, 

banking, finance & many more. This increasing demand of 

web-based applications has also made the Internet as a 

potential target for different forms of attack thus raising 

awareness of web application administrators of the need to 

effectively protect their web applications from being 

attacked by malicious users. One such attack most 

commonly used is Sql Injection attack in which the inputs 

are modified resulting into illegal queries to a database 

which has become one of the most serious threats to the web 

applications. 

In this paper, we propose a technique that uses the intrusion 

detection system combining the static & dynamic phases so 

as to validate the user input.  
 

Keywords: SQL injection attack, SQL query, a combined 

dynamic and static method, Web application 

I. INTRODUCTION  

In today‟s world, internet is playing an important role since it is 

one huge interconnected network which plays a vital role in our 

day to day lives. Web applications are widely used in financial, 

commercial and across multiple business areas. These web 

applications work by taking the input from the user, processing 

them & providing the resultant output for the same. Since the 

input data obtained by the user can contain malicious data 

turning into an attack. Thus, this data must be validated before 

processing so as to confirm that the data is not malicious and is 

obtained from the valid user. Sometimes, it might happen that 

there are no strong validation checks performed which can affect 

the security of the data. Thus, the lack of strong types and 

invalidated database access control can permit attacks to exploit 

the vulnerabilities to launch particular attacks. These attacks 

might cause a serious leak of sensitive data & might also lead to 

file corruption. 

 

Many research and studying is undertaken by various 

researchers so as to come up with various detecting and 

prevention of these attacks and most preferred techniques are 

web framework, static analysis, dynamic analysis, combined 

static and dynamic analysis, and machine learning techniques. 

 

The static analysis method [1] involves the inspection of 

computer code without actually executing the program. The 

main idea behind static analysis is to identify software defects 

during the development phase. Static analysis is applied to find 

potential violations matching a vulnerability pattern, so it is 

more effective than the filtering method. But attacks having the 

correct parameter types cannot be detected. The main limitation 

of the method is that it cannot detect SQL injection attacks 

patterns that are not known beforehand, and explicitly described 

in the specifications. The dynamic analysis [2] can be seen as 

the next logical step of static analysis. It inspects the behavior of 

a running system and does not require access to the internals of 

the system; however this method is not able to detect all SQL 

injection attacks. A combined static and dynamic analysis 

method [3] can compensate for the weaknesses of each method 

and is highly proficient in detecting SQL injection attacks. The 

combined usage of a method of static and dynamic analysis is 

very complicated. 

II. SQL INJECTION 

SQL injection is a code injection technique used to attack 

database systems through vulnerable web applications [4]. 

The technique not only allows the attacker to steal the entire 

content of relational databases but also to make arbitrary 

changes to both the database schema and the contents. 

Relational database server products have no mechanism to 

deal with SQL injection as the problem is rooted not in the 

database server itself but in vulnerable applications with 

excessive privileges granted to users. In many cases, a victim 

of an SQL injection attack does not even know that 

information is compromised until long after the attack has 

passed. Perhaps he may receive an angry e-mail from a 

customer whose credit card number may have been stolen or 

from the attacker himself seeking some form of blackmail. In 

many instances, victims are not aware that their confidential / 

critical data has been stolen. While the details of SQL 

injection attacks vary among implementations of relational 

database systems (RDBMS), both commercial and open 

source RDBMSs are potentially susceptible to attack. 

 

Most SQL injection attacks are executed through an 

application that takes inputs supplied by the user for query 

parameters. The attacker supplies a carefully crafted string to 

form a new query whose results are very different from what 

the application developer intended. For example, consider a 

script on a web site that takes a search parameter like Zip 

code to return selected results from a database. A very simple 

attack may be possible by providing something, like “1 OR 

1=1” in the text field, which causes the SQL server to return 

true and returns all records from a particular table. An 

attacker can often gain access to anything available with the 



ISSN: 2455-2631                                                                                                © May 2016 IJSDR | Volume 1, Issue 5 

 

IJSDR1605004 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 19 

 

script‟s privileges, which is often full access to one or more 

databases.  

 

While SQL injection attacks could be executed against any 

application, web applications are the most commonly 

vulnerable. The attacker can easily explore a site for 

vulnerabilities without being caught or having to work 

through sophisticated network intrusion techniques as most 

prospective targets leave their web site applications wide 

open. Fire- walls and traditional network intrusion detection 

systems are not useful against SQL injection. Some signature-

based detection systems have been designed for web servers 

to protect vulnerable scripts from malicious input code. 

However, these signature-based systems are inherently 

susceptible to evasion methods that take advantage of the 

expressiveness of the SQL language or alternate character 

encodings. Remarkably, writing scripts that are not vulnerable 

to SQL injection is as simple as passing all user-provided text 

through a string. As past experience has shown, vulnerable 

scripts are found in most places and SQL injection affects 

every database on every platform. Attacks can be used to gain 

information disclosure, to bypass authentication mechanisms, 

to modify the database, and, in some cases, to execute 

arbitrary code on the database server itself. 

 

A.  AND/OR ATTACK 

Web programmers often take string values entered by an Internet 

user on a form that represents user names and passwords and 

place them directly into the SQL statement to be run against a 

database. A simple example of SQL statement that may be used 

is as follows: 

 

SELECT username, password FROM Login 

WHERE username = 'username' AND password = 'password'; 

  

In this example, the values username and password are obtained 

from the form submitted via the web application. This username 

and password obtained from the form are matched with the 

username and password in the Login table. If any rows are 

returned, the user is authenticated.  

However, if the web programmer does not validate these values, 

a hacker may instead pass arbitrary values that the programmer 

did not originally anticipate. One such attack is the basic attack 

that involves the AND or OR logic in the SQL predicate. The 

hacker can specify a valid username such as “Jen Swift” and 

then specify the password as “' OR '1'='1” in the form. The final 

test SQL query that uses these values will be:  

SELECT username, password FROM Login WHERE username 

= ‘Jen Swift’ AND password = '' OR '1'='1'; 

 

 Provided that “Jen Swift” is a valid user, the user will be 

considered an authenticated user and this will allow the hacker 

to log-in and proceed as “Jen Swift”, because even though the 

password string is not empty, „1‟=„1‟ is a valid predicate that 

will always return TRUE. Thus, lets the hacker get the complete 

access to the victim‟s information.  

 

Here, the hacker simply needs to do several “probing” tests and 

check the messages returned to see if this is indeed the case. If 

the attack is not successful, the attacker simply moves on and 

tries another method. If it is successful, then the DBMS returns 

the username and corresponding password; the hacker now has 

unauthorized access to the database through that username. 

 

B.  COMMON ATTACK 

 

As mentioned earlier, SQL allows inline commenting within the 

SQL “code”. This allows two variations of SQL-I comments 

attacks. One simple technique is assigning username to be a 

valid username followed by comment characters. For example, 

we assign username = “admin' --”. Then our SQL test query may 

look like this: 

 

SELECT username, password FROM Login 

WHERE username = 'admin' --' AND password = 'password'; 

 

Everything after the “--” in the WHERE clause will be ignored, 

so the hacker can now login as “admin”.   

This is a method of using comments as a way of ignoring the 

rest of the query. [5] The variation of the comments attack is 

using comments as a way of obfuscating the signature of any 

SQL-I attack to avoid detection. Therefore, the use of C-style 

comments “/*” and “*/” can be combined with any of the 

previously discussed attacks as a way of attempting to 

circumvent signature-based detection. For example, if an 

application searches a string passed from a form for the UNION 

keyword to attempt to catch UNION injection attacks (discussed 

in more detail in a subsequent section), an attacker may choose 

to use comments to conceal this. For example, instead of using 

“UNION ALL”, the attacker may instead use 'UNION /**/ALL' 

or 'UN/**/ION A/**/LL'. Both of these are synonymous with 

“UNION ALL” in the context of an SQL statement. In addition 

to breaking up keywords, comments may be used in place of 

spaces. A system using signature-based detection may miss 

keywords and SQL-I patterns if it is not careful to also consider 

SQL-I Comments attacks as well. 

 

C. STRING CONCATINATION 

 

Attack SQL has an option to concatenate separate strings or 

characters to form complete strings. This is accomplished using 

+ or “double pipe” (||), or the function CONCAT (such as in 

MySQL). These operations can be used to create a variation of 

the UNION Injection attack by obfuscating the UNION keyword 

in a string concatenation operation. For example, an attacker 

may use „UNI‟ + „ON A‟ + „LL‟in place of “UNION ALL” if he 

suspects the system looks for the UNION ALL keyword.[5] 

Another use of string concatenation in an attack is when the 

attacker suspects the system searches for single quotes („). Then 

the attack may choose to use the CHAR() function in 

conjunction with the string concatenation to issue characters 

indirectly without using any single quotes. For example, an 

attack may use 

CONCAT(CHAR(65),CHAR(68),CHAR(77),CHAR(73),CHAR

(78)) to represent „ADMIN‟ so that the system will not find a 

single quote if it was looking for them. 



ISSN: 2455-2631                                                                                                © May 2016 IJSDR | Volume 1, Issue 5 

 

IJSDR1605004 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 20 

 

 

D.  UNION INJECTION ATTACK 

 

The UNION Injection attack may be the most dangerous, since it 

allows the attacker to return records from another table. For 

example, an attack may modify the SQL query statement that 

selects from the user authentication table to select another table 

such as the accounts table.  

 

SELECT username, password FROM userAuthTable UNION 

ALL SELECT accountNum, balance FROM Accounts; 

 

 The use of UNION ALL in this attack allows the attacker 

access to tables that the SQL query statement was not originally 

designed for. The resulting rows selected from both tables will 

appear on the resulting page. The trickiness in this attack lies in 

the fact that the columns selected from the second table must be 

compatible in number (the same number of columns as the 

original table must be selected) and type. When trying to guess 

the correct number of columns, the attack may simply keep 

trying to use different number of columns in each attempt until 

he finds the right number. To match the type, the attack may try 

to try different types until he stumbles upon the right one or he 

may simply choose to use NULL instead. The IDPS system 

discussed later does not return any messages such as response or 

HTTP status codes and limits internal information being 

broadcast externally as much as possible. 

 

E. HEXADECIMAL/DECIMAL/BINARY    

    VARIATION ATTACK 

 

Attackers can further try to take advantage of the diversity of the 

SQL language by using hexadecimal or decimal representations 

of the keywords instead of the regular strings and characters of 

the injection text.  

For example, instead of using the traditional SQL-I Attack text 

1 UNION 

SELECT ALL 

FROM WHERE 

an attacker may substitute this with 

&#x31;&#x20;&#x55;&#x4E;&#x49;&#x4F;&#x4E;&#x20;&#

x53;&#x45;&# 

x4C;&#x45;&#x43;&#x54;&#x20;&#x41;&#x4C;&#x4C;&#x2

0;&#x46;&#x5 

2;&#x4F;&#x4D;&#x20;&#x57;&#x48;&#x45;&#x52;&#x45; 

 to attempt to avoid detection by signature-based detection 

engines. [6] To attempt to avoid detection by signature-based 

detection engines. [6]  

The system that does not look for hexadecimal or decimal 

characters will be susceptible to this variation of the SQL-I 

attack.  

 

F. WHITE SPACE MANIPULATION ATTACK 

 

Signature-based detection is an effective way of detecting SQL-I 

attacks. Modern systems have the capacity to detect a varying 

number of white spaces around the injection code, some only 

detect one or more spaces; they may overlook patterns where 

there are no spaces in between. For example, the SQL-I pattern ' 

or 'a' <> 'b can be re-written as 'or'a'<>'b 16 containing no spaces 

in between. A DBMS SQL parser will be able to handle a 

variable around all of white space characters or keywords. If a 

signature-based detection method only takes into account the 

first pattern, it will completely overlook the second one. In 

additional to the standard space character, white space characters 

also include the tab, carriage return, and line feed characters.[6] 

To properly implement signature-based detection, the system 

must be able to handle white space characters. 

 

III. INTRUSION DETECTION & PREVENTION SYSTEM 

(IDPS) DESIGN 

The system discussed is called the Intrusion Detection and 

Prevention System (IDPS). The particular system discussed 

here is an extension of a particular system that protects a web 

application system from CGI attacks. [7] However, the 

original system did not guard against SQL Injection attacks 

directed at databases connected to the system. We discuss 

how the SQL-I extension of the Intrusion Detection and 

Prevention System works in more detail. 

 

IDPS Detection Models  

There are two models of detection used by this system.  

 Signature-based Detection Model  

 Anomaly-based Detection Model 

 A system that implements only one of these models is not as 

robust as a system that utilizes a combination of them. The 

signature-based detection fails to detect unknown attacks, 

while anomaly-based detection will detect unusual activity 

and behavior. This is the reason why the Intrusion Detection 

and Prevention System (IDPS) make use of both. 

IV. PROPOSED SCHEME 

Here we introduce an efficient algorithm which can be used for 

detecting & preventing the SQLIA. This algorithm basically 

works as pattern search & match. We divide this module into 

two different phases viz. 

 Static Phase (Signature-based Detection Model) 

 Dynamic Phase (Anomaly-based Detection Model 

/Behavioral) 

 

Static Phase 

1. Input query (from UI) compared with the pre-

determined patterns stored called as anomaly patterns 

stored in the Static Pattern List. 

2. If matched, considered as an attack and the user is 

blocked by giving a generic message “invalid 

username/password.” 

3. If not matched, enters the dynamic phase. 

Dynamic Phase 

1. Here, Anomaly Score value is calculated for the user 

generated SQL Query, If the Anomaly Score value is 

more than the Threshold value, then an Alarm is given 

and Query will be pass to the Administrator.  



ISSN: 2455-2631                                                                                                © May 2016 IJSDR | Volume 1, Issue 5 

 

IJSDR1605004 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 21 

 

2. If the Administrator receives any Alarm then the Query 

will be analyzed by manually. If the query is affected 

by any type of injection attack, then a pattern will be 

generated and the pattern will be added to the Static 

Pattern list A.  

 Anomaly Score value calculation  

As mentioned earlier, in the Static Phase, each anomaly 

pattern from the Static Pattern List is checked with the user 

generated query. This anomaly pattern is given an anomaly 

score. If this score is a 100% match with the Static Pattern 

List, it is considered as an attack and the user is blocked. 

Now, if the anomaly pattern is not 100% match with the 

ones listed in the Static Pattern List, it enters the Dynamic 

Phase. If the Anomaly Score value is more than the 

Threshold value (assume that 50%), then the query will be 

transferred to the Administrator. 

 
Figure1. Flowchart of Propose Scheme 

 

V. CONCLUSION 

SQL Injections is one of the most common techniques used 

for attacking the web applications. These attacks are used to 

gain the information i.e. the data stored in the database. These 

attacks reshape SQL queries, thus altering the behavior of the 

program for the benefit of the hacker. Thus to avoid this, we 

use IDPS systems wherein the combination of the static & 

dynamic phase together can help in detection & prevention of 

the attacks. 

 

This implementation minimizes the efforts required by the 

programmer since it eliminates all the malicious queries 

detecting the already generated attack patterns & prevents the 

user from entering the system. It also detects the patterns that 

are prone to form an attack thus calculating the threshold 

value of that particular query & confirming if it can be a 

malicious query or not & processes accordingly further.  

 

Future work should focus on evaluating the techniques 

precision and effectiveness in practice. 

 

     REFERENCES 

[1.] C. Gould, Z. Su, P. Devanbu, JDBC checker: “A static 

analysis tool for SQL/JDBC applications”, in Proceedings 

of the 26th International Conference on Software 

Engineering, ICSE, 2004, pp. 697–698. 

 

[2.] Y. Kosuga, K. Kernel, M. Hanaoka, M. Hishiyama, Y. 

Takahama, “Sania: syntactic and semantic analysis for 

automated testing against SQL injection” , in Proceedings 

of the Computer Security Applications Conference 2007, 

2007, pp. 107–117. 

 

[3.] W.G. Halfond, A. Orso, “AMNESIA: analysis and 

monitoring for neutralizing QL-injection attacks”, in 

Proceedings of the 20th IEEE/ACM International 

Conference on Automated Software Engineering, 2005, pp. 

174– 183. 

 

[4.] K. Spett. Sql injection: Are your web applications 

vulnerable?http://www.spidynamics.com/ 

whitepapers/WhitepaperSQLInjection.pdf, 2002. 

 

[5] Webpage “SQL Injection Cheat Sheet” 

http://ferruh.mavituna.com/sql-injection-cheatsheet-oku 

Retrieved on 2010-03-01. 

 

[6] File: sql-injection-detection-wp.pdf Website: 

http://www.f5.com/pdf/whitepapers/sql-injection-detection-

wp.pdf Retrieved 2009-10-01 

 

[7] Aulakh, T. Intrusion Detection and Prevention System: 

CGI Attacks, 2009. San Jose State University master‟s 

thesis project.

 

http://ferruh.mavituna.com/sql-injection-cheatsheet-oku%20Retrieved%20on%202010-03-01
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku%20Retrieved%20on%202010-03-01

