
ISSN: 2455-2631 © March 2016 IJSDR | Volume 1, Issue 3

IJSDR1603025 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 130

HADOOP MAPREDUCE - WORDCOUNT

IMPLEMENTATION
1
P. Deepika,

2
Prof. G. R. Ananatha Raman

Department of Computer Science and Engineering

ACE, Hosur

Abstract

Data is the hot topic in the present scenario. When the size

of the data is small, then pen drives or CD's can be used for

storage. For medium sized data, a hard disk can be used for

storage but when the size of the data is very large we call it

as Big Data. For managing this massive amount of data,

Google found out a solution which is named as MapReduce.

It simply breaks a large data into small parts and processes

it, then combines it together. Hadoop is the tool for

managing the Big Data where it uses the MapReduce

algorithm where different CPU nodes are used for

processing the Big Data. This paper is a study of Hadoop

MapReduce and its related concepts.

Index terms: Storage, Big Data, Hadoop, MapReduce, CPU

nodes

I. INTRODUCTION

Data can be either structured or unstructured. Structured

data will always define a length and format for the particular

data and it is organized properly. Unstructured data will not

define any structure and it is also not organized properly.

Big Data is the one where it will manage massive amount of

both the structured and unstructured data. In the previous

years, the organization will have a separate computer to

storage the organization's content. This approach can be

practiced when there is less volume of data. When the data

size exceeds, it cannot processed with this approach. It is

difficult to maintain the overwhelming data. For this

problem, Google found a solution called MapReduce and it

is OS Independent. MapReduce tasks have two steps. One is

the Map Phase and the other one is the Reduce Phase. In the

Map Phase, the input data is divided into splits for analysis

by map tasks running in parallel across the Hadoop Cluster.

The MapReduce framework gets the input from the HDFS.

In the Reduce Phase, it uses the results from map tasks as

inputs to a set of parallel reduce tasks. The result is again

stored in HDFS.

The rest of the paper is organized as follows. Section III

discusses the basic workflow of MapReduce. Section IV

briefs the concept of HDFS. Section V relates to the

implementation of Hadoop NameNode localhost. Section VI

discusses the results obtained.

II. RELATED WORK

Hadoop is an industrial scale batch processing

distributed computing tool. It has the capability to connect

computers with multiple processor cores with a scale

ranging from hundreds to thousands. Vast volumes of data

can be efficiently distributed across clusters of computers

using Hadoop. The Hadoop scale consists of hundreds of

gigabytes of data at the least. Hadoop has been built with

the capability to manage vast data sets whose size can easily

lie between couple of gigabytes to thousands of petabytes.

Hadoop provides its solution in the form of a Distributed

File System which splits the data and stores it in several

different machines. This enables parallel processing of the

problem and efficient computation is possible. The design of

Hadoop is such that it can efficiently manage vast quantity

of data sets by taking advantage of clustered computing or

by connecting hundred of machines with processing power

in parallel. Theoretically speaking, a single, powerful

thousand CPU machine would be much more expensive

than thousands of machines with individual CPUs thus

making it an easier investment. Hadoop offers a cost

effective solution by tying these smaller and cheaper

machines together.

After the data is loaded into clusters in Hadoop it is

distributed to all the nodes. The HDFS then splits the data

into sets which allow management by individual nodes

within the cluster. To handle unavailability of data due to

failure, each part is also replicated across the cluster. The

data is also re-replicated in response to failure of the system.

All these parts of data are easily accessible through a

universal namespace, despite the parts being distributed and

replicated on multiple machines.

III. MAPREDUCE

MapReduce is a tool implemented for managing and

processing vast amounts of unstructured data in parallel

based on division of a big work item in smaller independent

task units. Programs which are Map Reduces are

programmed to manage vast amounts of data in parallel. To

achieve this, load shedding is required across multiple

machines. The main leverage of MAPREDUCE is the tasks

of similar nature are grouped together so that same type of

data is placed on the same nodes. Doing this saves the sync

overhead which might have been caused if tasks were

grouped in a random order. MAPREDUCE data elements

are immutable i.e if you change input (key, value) in a

mapper then it will not be displayed in the input files.

Rather it will be taken care in the next execution with the

new output values.

 List Processing: In concept, programs which are

map reduced convert an array of data coming in as

input into an array of data which is the output. The

program goes through this process two times, using

two functions which are mapping and reduction.

 List based Mapping: In a map reduce context the

first execution phase is the MAPPER which takes

ISSN: 2455-2631 © March 2016 IJSDR | Volume 1, Issue 3

IJSDR1603025 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 131

the data elements as input and generates the

corresponding output data elements

Fig. 1 MapReduce task

IV. HDFS

The HDFS is designed to run on clustered computing

platform. It mirrors the already existing file nomenclature in

many ways but its differences really make it stands out from

existing file systems. One of the salient features of HDFS is

that it is fault-tolerant to a very high degree and cost

effective. The system allows for greater and faster access to

data of an application which is an advantage for processes

that require access to large amount of data. HDFS was

designed by Apache Nutch project as an infrastructure

extension and is now a core component of the project.

HDFS is based on a typical master - slave architecture. An

HDFS cluster is made up of a single Name Node and a

server acting as a master managing the file access and name

space regulations. To simplify the system architecture a

single name node exists in a cluster. The Name Node holds

& manages whole metadata of HDFS. The design of the

systems is such that the data does not flow through the

Name Node.

HDFS supports an empherical file structure. Directories can

be created by user or an application and files are stored

inside those directories. The hierarchy of the file namespace

is usually like the previously defined file systems. As such

files can be created & removed, moved from one directory

to another directory or renamed. HDFS has not yet

implemented user quotas and access permissions.

The Name Node handles the file system namespace. It

records alterations and its associated properties. A number

can also be specified for replicas of a file by the application

which must be maintained by the HDFS which is defined as

the replication factor and the information is stored in the

Name Node.

HDFS is programmed to manage last file stored in large

cultures of data mines / structures while ensuring reliability.

The way this is managed is by storing files in a sequence of

blocks which are the same size, with the last block being an

exception. These blocks are then replicated to test fault

tolerance in which the size of the block and the replication

factors are configurable. An application can then custom

specify the number of copies of a file.

V. IMPLEMENTATION

Figure 1. Architectural Design

The client machine is used for accessing the Hadoop

Cluster. Interface Layer provides the interface between the

client machine and the Processing component. Processing

component provides different functionalities to perform the

operations like reading, writing, modifying etc.. Hadoop

Cluster is used for storing and managing huge volume of

data.

Figure 2. Hadoop NameNode localhost

VI. RESULTS

Figure 3. WordCount result

The above result states that the developed system works

faster to fetch the expected result.

VII. CONCLUSION

Hadoop with its efficient DFS & programming framework

based on concept of mapped reduction, is a powerful tool to

manage large data sets. With its map-reduce programming

paradigms, overall architecture, ecosystem, fault- tolerance

techniques and distributed processing, Hadoop offers a

complete infrastructure to handle Big Data. Users must

leverage the benefits of Big-Data by adopting Hadoop

infrastructure for data processing. However, the issues such

as lack of flexible resource management, application

deployment support, and multiple data source support pose a

challenge to Hadoop‟s adoption. Proper skill training is also

needed for achieving large scale data analysis. These

challenges must be overcome so that we can tap the full

potential of Hadoop data management power.

ISSN: 2455-2631 © March 2016 IJSDR | Volume 1, Issue 3

IJSDR1603025 International Journal of Scientific Development and Research (IJSDR) www.ijsdr.org 132

REFERENCES

[1] Yahoo! Inc, Hadoop Tutorial from Yahoo!

Available:http://developer.yahoo.com/hadoop/tutorial/index.

html

[2] Jens Dittrich and JorgeArnulfo Quian´eRuiz, " Efficient

Big Data processing in Hadoop Mapreduce," Proceedings of

the VLDB Endowment, Volume 5 Issue 12, August 2012,

Pages 2014-2015

[3] Arnab Nandi, Cong Yu, Philip Bohannon, and Raghu

Ramakrishnan, Fellow, IEEE, “Data Cube Materialization

and Mining over MapReduce” TRANSACTIONS ON

KNOWLEDGE AND DATA ENGINEERING, VOL. 6,

NO. 1, JANUARY 2012

[4] Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Rasin,

A., and Silberschatz, A. 2010. HadoopDB in action:

Building real world applications. In Proceedings of the 36th

ACM SIGMOD International Conference on Management

of Data (SIGMOD‟10).

[5] MapReduce: Simplified Data Processing on Large

Clusters. Available at

http://labs.google.com/papers/mapreduceosdi04.pdf

[6] Sam Madden, “ From Databases to Big Data”, IEEE,

Internet Computing, May-June 2012.

[7] Yuri Demchenko, Zhiming Zhao, Paola Grosso, Adianto

Wibisono, Cees de Laat, “Addressing Big Data Challenges

for Scientific Data Infrastructure”, IEEE , 4th International

Conference on Cloud Computing Technology and Science,

2012.

[8] Jeffrey Dean and Sanjay Ghemawat.

"Mapreduce:simplified data processing on large clusters",

Commun. ACM, 51(1):107–113, 2008.

[9] Jiang, B.C. Ooi, L. Shi, and S. Wu, “The Performance of

MapReduce: An In-Depth Study,” Proc. VLDB

Endowment, vol. 3, no. 1, pp. 472-483, 2010.

[10] Gillick et al., 2006, Gillick D., Faria A., DeNero J.,

MapReduce: Distributed Computing for Machine Learning,

Berkley, December 18, 2006.

[11] Jeffrey Dean and Sanjay Ghemawat, " MapReduce: a

flexible data processing tool," Communications of the

ACM, Volume 53 Issue 1, January 2010, Pages 72-77

[12] Apache Hadoop - Petabytes and Terawatts

[Online].Available:http://www.youtube.com/watch?v=SS27

FhYWf U& feature=related

[13] “Big Data: The next frontier for innovation,

competition, and productivity”, McKinsey Global Institute,

May 2011, p. 11:

http://www.mckinsey.com/Insights/MGI/Research/Technolo

gy_and_Innovation/Big_data_The_next_frontier_for_innov

ation.

